Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 146: 3-14, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969459

RESUMEN

Bacillus velezensis M3-1 strain isolated from the sediment of Myriophyllum aquatium constructed wetlands was found to efficiently convert NO3--N to NO2--N, and the requirements for carbon source addition were not very rigorous. This work demonstrates, for the first time, the feasibility of using the synergy of anammox and Bacillus velezensis M3-1 microorganisms for nitrogen removal. In this study, the possibility of M3-1 that converted NO3--N produced by anammox to NO2--N was verified in an anaerobic reactor. The NO3--N reduction ability of M3-1 and denitrifying bacteria in coupling system was investigated under different C/N conditions, and it was found that M3-1 used carbon sources preferentially over denitrifying bacteria. By adjusting the ratio of NH4+-N to NO2--N, it was found that the NO2--N converted from NO3--N by M3-1 participated in the original anammox.The nitrogen removal efficacy (NRE) of the coupled system was increased by 12.1%, compared to the control group anammox system at C/N = 2:1. Functional gene indicated that it might be a nitrate reducing bacterium.This study shows that the nitrate reduction rate achieved by the Bacillus velezensis M3-1 can be high enough for removing nitrate produced by anammox process, which would enable improve nitrogen removal from wastewater.


Asunto(s)
Amoníaco , Bacillus , Nitratos , Nitrógeno , Oxidación-Reducción , Bacillus/metabolismo , Nitrógeno/metabolismo , Nitratos/metabolismo , Amoníaco/metabolismo , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Desnitrificación
2.
J Hazard Mater ; 475: 134934, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38889463

RESUMEN

Emerging pollutants (EPs) are prevalent in aquatic environments globally. Researchers strive to understand their occurrence and behavior prior to their release into the environment. In this study, we examined five wastewater treatment plants (WWTPs), collected 50 wastewater samples and 10 sludge samples. We explored the sources and destinations of phthalic acid esters (PAEs) within these WWTPs using mass balance equations. Wastewater treatment diminished the frequency and concentration of PAEs, and decreased the fraction of short-chain PAEs. We confirmed the increased concentration of PAEs post-primary treatment and modified the mass balance equation. Calculations suggest that weaker "the mix" in winter than in summer and stronger sedimentation in winter than in summer resulted in high efficiency of PAEs removal by winter wastewater treatment. The mass flux of biodegradation was influenced by the combination of biodegradation efficiency and the strength of the particular type of PAEs collected, with no seasonal differences. Mass fluxes for sludge sedimentation were mainly influenced by season and were higher in winter than in summer. This study enhances our understanding of emerging pollutants in manual treatment facilities and offers insights for optimizing wastewater treatment methods for water professionals.


Asunto(s)
Ésteres , Ácidos Ftálicos , Estaciones del Año , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Ácidos Ftálicos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Aguas Residuales/química , Ésteres/análisis , Ésteres/química , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/química , Biodegradación Ambiental , Purificación del Agua/métodos
3.
Environ Res ; 239(Pt 1): 117245, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774999

RESUMEN

The squeezed liquid from fruit and vegetable waste (LW) presents a unique wastewater challenge, marked by recalcitrance in treatment and amplified design risks with the application of conventional processes. Following coagulation of the squeezed liquid, the majority of particulate matter precipitates. The resulting precipitated floc (LWF) is reclaimed and subsequently utilized for the synthesis of biochar. The present study primarily explores the viability of repurposing LWF as biochar to enhance soil quality and mitigate N2O emissions. Findings indicate that the introduction of a 2% proportion of LWFB led to a remarkable 99.5% reduction in total N2O emissions in contrast to LWF. Concurrently, LWFB substantially enhanced nutrients content by elevating soil organic carbon (SOC) and nitrogen levels. Utilizing high-throughput sequencing in conjunction with qPCR, the investigation unveiled that the porous structure and substantial specific surface area of LWFB potentially fostered microbial adhesion and heightened diversity within the soil microbial community. Furthermore, LWFB notably diminished the relative abundance of AOB (Nitrosospira, Nitrosomonas), and NOB (Candidatus_Nitrotoga), thereby curbing the conversion of NH4+ into NO3-. The pronounced elevation in nosZ abundance implies that LWFB holds the potential to mitigate N2O emissions through a conversion to N2.


Asunto(s)
Microbiota , Suelo , Suelo/química , Carbono , Verduras , Frutas/química , Óxido Nitroso , Microbiología del Suelo
4.
Environ Sci Pollut Res Int ; 30(44): 99454-99472, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37610547

RESUMEN

The water quality status, spatial and temporal change processes, and water environment improvement process of urban rivers are valuable lessons to be learned under the sustainable development strategy. This study aims to reveal the water environment improvement process of intensively developed urban rivers, elucidate the spatial and temporal distribution characteristics of major pollutants, and provide recommendations for their water environment management. Water quality data from eight monitoring sites (2007-2020) in the Longgang River basin in Shenzhen, China, and comprehensive pollution index method (CPI), modified comprehensive pollution index method (M-CPI), and Pearson correlation analysis method were used for comprehensive analysis. The study shows that TN, TP, NH3-N, and COD have the greatest influence on the water quality of Longgang River, with the average pollution contribution of 53.39%, 14.49%, 11.66%, and 4.92%, in order. In 2015-2020, the water quality of the main stream of the Longgang River in the wet season was worse than that in the dry season, while the water quality of the tributaries Dingshan River and the Huangsha River in the dry season was worse than the wet season. The spatial distribution characteristics based on M-CPI indicate that the water quality of the lower reaches of Longgang River, the tributaries Dingshan River and Huangsha River, is relatively poor. In addition, the water environment improvement process of Longgang River can be divided into 3 stages: engineering stage (2007-2013, rating changed from heavily polluted to basically qualified), bottleneck stage (2013-2017, rating fluctuated slightly above and below basically qualified), and ecological restoration stage (2017-2020, rating reached qualified in 2019).


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Ríos , China
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...