Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.702
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38954246

RESUMEN

PURPOSE OF REVIEW: Chronic migraine is a disabling progressive disorder without effective management approaches. Animal models have been developed and used in chronic migraine research. However, there are several problems with existing models. Therefore, we aimed to summarize and analyze existing animal models to facilitate translation from basic to clinical. RECENT FINDINGS: The most commonly used models are the inflammatory soup induction model and the nitric oxide donor induction model. In addition, KATP openers have also been used in model induction. Based on the above models, some molecular targets have been identified, such as glutamate receptors. However, each model has its shortcomings and characteristics, and there are still some common problems that need to be solved, such as spontaneous headache, evaluation criteria after model establishment, and identification methods. In this review, we summarized and highlighted the advantages and limitations of the currently commonly used animal models of chronic migraine with a special focus on drug discovery and current therapeutic strategies, and discussed the directions that can be worked on in the future.

3.
Front Immunol ; 15: 1400177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953027

RESUMEN

Background: Chimeric antigen receptor T (CAR-T) cell therapies have achieved remarkable success in the treatment of hematological tumors. However, given the distinct features of solid tumors, particularly heterogeneity, metabolic aggressiveness, and fewer immune cells in tumor microenvironment (TME), the practical utility of CAR-T cells for solid tumors remains as a challenging issue. Meanwhile, although anti-PD-1 monoclonal antibody (mAb) has shown clinical efficacy, most mAbs also show limited clinical benefits for solid tumors due mainly to the issues associated with the lack of immune cells in TME. Thus, the infiltration of targeted immunological active cells into TME could generate synergistic efficacy for mAbs. Methods: We present a combinational strategy for solid tumor treatment, which combines armored-T cells to express Fc-gamma receptor I (FcγRI) fragment on the surfaces for targeting various tumors with therapeutically useful mAbs. Choosing CD20 and HER-2 as the targets, we characterized the in vitro and in vivo efficacy and latent mechanism of the combination drug by using flow cytometry, ELISA and other methods. Results: The combination and preprocessing of armored T-cells with corresponding antibody of Rituximab and Pertuzumab exerted profound anti-tumor effects, which is demonstrated to be mediated by synergistically produced antibody-dependent cellular cytotoxicity (ADCC) effects. Meanwhile, mAb was able to carry armored-T cell by preprocessing for the infiltration to TME in cell derived xenograft (CDX) model. Conclusions: This combination strategy showed a significant increase of safety profiles from the reduction of antibody doses. More importantly, the present strategy could be a versatile tool for a broad spectrum of cancer treatment, with a simple pairing of engineered T cells and a conventional antibody.


Asunto(s)
Neoplasias , Receptores de IgG , Linfocitos T , Microambiente Tumoral , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Humanos , Animales , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoterapia Adoptiva/métodos , Receptor ErbB-2/inmunología , Receptor ErbB-2/antagonistas & inhibidores , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Femenino , Antígenos CD20/inmunología
4.
Front Immunol ; 15: 1405146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947338

RESUMEN

Background: Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced computed tomography (CT) and combined with clinical data to predict the major pathological response to NIT in ESCC patients. Methods: This retrospective study included 82 ESCC patients who were randomly divided into the training group (n = 57) and the validation group (n = 25). Radiomic features were derived from the tumor region in enhanced CT images obtained before treatment. After feature reduction and screening, radiomics was established. Logistic regression analysis was conducted to select clinical variables. The predictive model integrating radiomics and clinical data was constructed and presented as a nomogram. Area under curve (AUC) was applied to evaluate the predictive ability of the models, and decision curve analysis (DCA) and calibration curves were performed to test the application of the models. Results: One clinical data (radiotherapy) and 10 radiomic features were identified and applied for the predictive model. The radiomics integrated with clinical data could achieve excellent predictive performance, with AUC values of 0.93 (95% CI 0.87-0.99) and 0.85 (95% CI 0.69-1.00) in the training group and the validation group, respectively. DCA and calibration curves demonstrated a good clinical feasibility and utility of this model. Conclusion: Enhanced CT image-based radiomics could predict the response of ESCC patients to NIT with high accuracy and robustness. The developed predictive model offers a valuable tool for assessing treatment efficacy prior to initiating therapy, thus providing individualized treatment regimens for patients.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Inmunoterapia , Aprendizaje Automático , Terapia Neoadyuvante , Tomografía Computarizada por Rayos X , Humanos , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/diagnóstico por imagen , Masculino , Femenino , Terapia Neoadyuvante/métodos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/diagnóstico por imagen , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Inmunoterapia/métodos , Nomogramas , Resultado del Tratamiento , Adulto , Radiómica
5.
Microsyst Nanoeng ; 10: 92, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957168

RESUMEN

Simultaneously achieving high sensitivity and detection speed with traditional solid-state biosensors is usually limited since the target molecules must passively diffuse to the sensor surface before they can be detected. Microfluidic techniques have been applied to shorten the diffusion time by continuously moving molecules through the biosensing regions. However, the binding efficiencies of the biomolecules are still limited by the inherent laminar flow inside microscale channels. In this study, focused traveling surface acoustic waves were directed into an acoustic microfluidic chip, which could continuously enrich the target molecules into a constriction zone for immediate detection of the immune reactions, thus significantly improving the detection sensitivity and speed. To demonstrate the enhancement of biosensing, we first developed an acoustic microfluidic chip integrated with a focused interdigital transducer; this transducer had the ability to capture more than 91% of passed microbeads. Subsequently, polystyrene microbeads were pre-captured with human IgG molecules at different concentrations and loaded for detection on the chip. As representative results, ~0.63, 2.62, 11.78, and 19.75 seconds were needed to accumulate significant numbers of microbeads pre-captured with human IgG molecules at concentrations of 100, 10, 1, and 0.1 ng/mL (~0.7 pM), respectively; this process was faster than the other methods at the hour level and more sensitive than the other methods at the nanomolar level. Our results indicated that the proposed method could significantly improve both the sensitivity and speed, revealing the importance of selective enrichment strategies for rapid biosensing of rare molecules.

6.
Curr Pharm Des ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963117

RESUMEN

INTRODUCTION: Eucommia ulmoides is a unique monophyletic and tertiary relict in China and is listed as a national second-class precious protected tree species. Eucommia ulmoides, recognized as a traditional Chinese medicine, can tonify the liver and kidneys and strengthen bones and muscles. Modern pharmacological research has proved that Eucommia ulmoides has multiple osteoprotective effects, including prohibiting the occurrence of osteoporosis and arthritis and enhancing the healing of bone fractures and bone defects. AIM: To check its osteotropic effects, which may provide ideas for its potential use for the development of novel drugs to treat osteoporosis, this study evaluated the effect of total flavonoids from Eucommia ulmoides leaves (TFEL) on the acquisition of Peak Bone Mass (PBM) in young female rats. MATERIALS AND METHODS: TFEL was isolated, and its purity was confirmed by using a UV spectrophotometer. TFEL with a purity of 85.09% was administered to 6-week-old female rats by oral gavage at a low (50), mid (100), or high (200 mg/kg/d) dose, and the control group was administrated only with the same volume of water. After 13 weeks of treatment, the rats were sacrificed, and serum, different organs, and limb bones (femurs and tibias) were harvested, and the bone turnover markers, organ index, Bone Mineral Density (BMD), biomechanical property, and microstructure parameters were assayed. Furthermore, molecular targets were screened, and network pharmacology analyses were conducted to reveal the potential mechanisms of action of TFEL. RESULTS: Oral administration of TFEL for 13 weeks decreased the serum level of bone resorption marker TRACP-5b. As revealed by micro-computer tomography analysis, it elevated BMD even at a low dose (50 mg/kg/d) and improved the microstructural parameters, which were also confirmed by H&E histological staining. However, TFEL showed no effects on body weights, organ index, and micromorphology in the uterus. In our network pharmacology study, an intersection analysis screened out 64 shared targets, with quercetin, kaempferol, naringenin, and apigenin regulating the greatest number of targets associated with osteoporosis. Flavonoids in Eucommia ulmoides inhibited the occurrence of osteoporosis potentially through targeting signaling pathways for calcium, VEGF, IL-17, and NF-κB. Furthermore, AKT1, EGFR, PTGS2, VEGFA, and CALM were found to be potentially important target genes for the osteoprotective effects of flavonoids in Eucommia ulmoides. CONCLUSION: The above results suggested that TFEL can be used to elevate the peak bone mass in adolescence in female individuals, which may prevent the occurrence of postmenopausal osteoporosis, and the good safety of TFEL also suggests that it can be used as a food additive for daily life to improve the bone health.

7.
FASEB J ; 38(13): e23791, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963340

RESUMEN

Inflammatory bowel disease (IBD) is a kind of recurrent inflammatory disorder of the intestinal tract. The purpose of this study was to investigate the effects of Weissella paramesenteroides NRIC1542 on colitis in mice. A colitis model was induced by adding 1.5% DSS to sterile distilled water for seven consecutive days. During this process, mice were administered different concentrations of W. paramesenteroides NRIC1542. Colitis was assessed by DAI, colon length and hematoxylin-eosin staining of colon sections. The expressions of NF-κB signaling proteins and the tight junction proteins ZO-1 and occludin were detected by western blotting, and the gut microbiota was analyzed by 16S rDNA. The results showed that W. paramesenteroides NRIC1542 significantly reduced the degree of pathological tissue damage and the levels of TNF-α and IL-1ß in colonic tissue, inhibiting the NF-κB signaling pathway and increasing the expression of SIRT1, ZO-1 and occludin. In addition, W. paramesenteroides NRIC1542 can modulate the structure of the gut microbiota, characterized by increased relative abundance of Muribaculaceae_unclassified, Paraprevotella, Prevotellaceae_UCG_001 and Roseburia, and decrease the relative abundance of Akkermansia and Alloprevotella induced by DSS. The above results suggested that W. paramesenteroides NRIC1542 can protect against DSS-induced colitis in mice through anti-inflammatory, intestinal barrier maintenance and flora modulation.


Asunto(s)
Colitis , Sulfato de Dextran , Microbioma Gastrointestinal , FN-kappa B , Transducción de Señal , Sirtuina 1 , Weissella , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Sirtuina 1/metabolismo , Ratones , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/microbiología , Sulfato de Dextran/toxicidad , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Weissella/metabolismo , Masculino , Probióticos/farmacología
8.
Int Immunopharmacol ; 138: 112605, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963979

RESUMEN

Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.

9.
Front Immunol ; 15: 1427348, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38966635

RESUMEN

Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.


Asunto(s)
Inmunoterapia , Melanoma , Análisis de la Célula Individual , Microambiente Tumoral , Neoplasias de la Úvea , Humanos , Neoplasias de la Úvea/genética , Neoplasias de la Úvea/terapia , Neoplasias de la Úvea/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Melanoma/terapia , Melanoma/genética , Melanoma/inmunología , Análisis de la Célula Individual/métodos , Inmunoterapia/métodos , Análisis de Secuencia de ARN , Biomarcadores de Tumor/genética , Heterogeneidad Genética , Animales , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica
10.
Transl Cancer Res ; 13(6): 2877-2891, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988920

RESUMEN

Background: Colorectal cancer (CRC) remains the leading cause of cancer death worldwide. Less than half of the patients are diagnosed when the cancer is locally advanced. Several studies have shown that intelectin-1 (ITLN1) can serve as a key prognostic and therapeutic target for CRC. The purpose of this study was to investigate the clinical value of ITLN1 in CRC and to analyse its potential as a predictive biomarker for CRC. Methods: Colon adenocarcinoma (COAD) is the main type of CRC. COAD project in The Cancer Genome Atlas (TCGA) database served as the training cohort, and GSE39582 series in the Gene Expression Omnibus (GEO) database served as the external independent validation cohort. First, the difference in the expression level of ITLN1 between COAD tissue and normal tissue was analysed, and the results were verified via immunohistochemistry. The relationship between ITLN1 expression and the prognosis of COAD patients was evaluated via the heatmap and the Kaplan-Meier (KM) curve. The ITLN1 coexpressed gene set obtained by Pearson correlation analysis was used. The prognostic signatures that were significantly correlated with survival status were screened by Cox and least absolute shrinkage and selection operator (LASSO) regression analyses. Finally, a nomogram related to ITLN1 was constructed based on the risk score of the prognostic signature and routine clinicopathological variables. Results: ITLN1 is significantly underexpressed in tumour tissues and can be used as a valuable tool to distinguish COAD. The high-expression group of ITLN1 was verified to have a greater survival rate. ITLN1 is significantly associated with a good prognosis in COAD patients. Six candidate genes (ITLN1 and MORC2, SH2D7, LGALS4, ATOH1, and NAT2) were selected for use in the Cox-LASSO regression analysis to calculate the risk score. Finally, a nomogram was constructed with a comprehensive risk score and clinicopathologic factors to successfully predict and verify the 1-year, 3-year, and 5-year survival probability. Conclusions: Our study established ITLN1 as an effective tool for CRC screening, diagnosis, and prognostic assessment, provided a basis for further study of the molecular function of ITLN1, and provided new insights for the mechanistic exploration and treatment of CRC.

11.
Neuro Oncol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38991556

RESUMEN

BACKGROUND: Artificial intelligence has been proposed for brain metastasis (BM) segmentation but it has not been fully clinically validated. The aim of this study was to develop and evaluate a system for BM segmentation. METHODS: A deep-learning-based BM segmentation system (BMSS) was developed using contrast-enhanced MR images from 488 patients with 10,338 brain metastases. A randomized crossover, multi-reader study was then conducted to evaluate the performance of the BMSS for BM segmentation using data prospectively collected from 50 patients with 203 metastases at five centers. Five radiology residents and five attending radiologists were randomly assigned to contour the same prospective set in assisted and unassisted modes. Aided and unaided Dice similarity coefficients (DSCs) and contouring times per lesion were compared. RESULTS: The BMSS alone yielded a median DSC of 0.91 (95% confidence interval, 0.90-0.92) in the multi-center set and showed comparable performance between the internal and external sets (p = 0.67). With BMSS assistance, the readers increased the median DSC from 0.87 (0.87-0.88) to 0.92 (0.92-0.92) (p < 0.001) with a median time saving of 42% (40-45%) per lesion. Resident readers showed a greater improvement than attending readers in contouring accuracy (improved median DSC, 0.05 [0.05-0.05] vs. 0.03 [0.03-0.03]; p < 0.001), but a similar time reduction (reduced median time, 44% [40-47%] vs. 40% [37-44%]; p = 0.92) with BMSS assistance. CONCLUSIONS: The BMSS can be optimally applied to improve the efficiency of brain metastasis delineation in clinical practice.

12.
New Phytol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992951

RESUMEN

Drought, especially terminal drought, severely limits wheat growth and yield. Understanding the complex mechanisms behind the drought response in wheat is essential for developing drought-resistant varieties. This study aimed to dissect the genetic architecture and high-yielding wheat ideotypes under terminal drought. An automated high-throughput phenotyping platform was used to examine 28 392 image-based digital traits (i-traits) under different drought conditions during the flowering stage of a natural wheat population. Of the i-traits examined, 17 073 were identified as drought-related. A genome-wide association study (GWAS) identified 5320 drought-related significant single-nucleotide polymorphisms (SNPs) and 27 SNP clusters. A notable hotspot region controlling wheat drought tolerance was discovered, in which TaPP2C6 was shown to be an important negative regulator of the drought response. The tapp2c6 knockout lines exhibited enhanced drought resistance without a yield penalty. A haplotype analysis revealed a favored allele of TaPP2C6 that was significantly correlated with drought resistance, affirming its potential value in wheat breeding programs. We developed an advanced prediction model for wheat yield and drought resistance using 24 i-traits analyzed by machine learning. In summary, this study provides comprehensive insights into the high-yielding ideotype and an approach for the rapid breeding of drought-resistant wheat.

13.
J Zhejiang Univ Sci B ; : 1-16, 2024 Jul 09.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38993075

RESUMEN

Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.

14.
Cancer Res Commun ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994678

RESUMEN

Aggressive breast cancers harbor TP53 missense mutations. Tumor cells with TP53 missense mutations exhibit enhanced growth and survival through transcriptional rewiring. To delineate how TP53 mutations in breast cancer contribute to tumorigenesis and progression in vivo, we created a somatic mouse model driven by mammary epithelial cell-specific expression of Trp53 mutations. Mice developed primary mammary tumors reflecting the human molecular subtypes of Luminal A, Luminal B, HER2-enriched, and Triple Negative Breast Cancer with metastases. Transcriptomic analyses comparing MaPR172H/- or MaPR245W/- mammary tumors to MaP-/- tumors revealed (1) differences in cancer associated pathways activated in both p53 mutants and (2) Nr5a2 as a novel transcriptional mediator of distinct pathways in p53 mutants. Meta-analyses of human breast tumors corroborated these results. In vitro assays demonstrate mutant p53 upregulates specific target genes that are enriched for Nr5a2 response elements in their promoters. Co-immunoprecipitation studies revealed p53R172H and p53R245W interact with Nr5a2. These findings implicate NR5A2 as a novel mediator of mutant p53 transcriptional activity in breast cancer.

15.
MedComm (2020) ; 5(7): e631, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38974713

RESUMEN

Congenital heart disease (CHD) is a structural abnormality of the heart and/or great vessels and patients with CHD are at an increased risks of various morbidities throughout their lives and reduced long-term survival. Eventually, CHD may result in various complications including heart failure, arrhythmias, stroke, pneumonia, and sudden death. Unfortunately, the exact etiology and pathophysiology of some CHD remain unclear. Although the quality of life and prognosis of patients with CHD have significantly improved following technological advancement, the influence of CHD is lifelong, especially in patients with complicated CHD. Thus, the management of CHD remains a challenge due to its high prevalence. Finally, there are some disagreements on CHD among international guidelines. In this review, we provide an update of the pathophysiology, diagnosis, and treatment in most common type of CHD, including patent foramen ovale, atrial septal defect, ventricular septal defect, atrioventricular septal defect, patent ductus arteriosus, coarctation of the aorta, transposition of the great arteries, congenitally corrected transposition of the great arteries, coronary anomalies, left and right ventricular outflow tract obstruction, tetralogy of Fallot and Ebstein anomaly. In particular, we focus on what is known and what is unknown in these areas, aiming to improve the current understanding of various types of CHD.

16.
aBIOTECH ; 5(2): 219-224, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974866

RESUMEN

Loss-of-function mutants are fundamental resources for gene function studies. However, it is difficult to generate viable and heritable knockout mutants for essential genes. Here, we show that targeted editing of the C-terminal sequence of the embryo lethal gene MITOGEN-ACTIVATED PROTEIN KINASES 1 (OsMPK1) results in weak mutants. This C-terminal-edited osmpk1 mutants displayed severe developmental defects and altered disease resistance but generated tens of viable seeds that inherited the mutations. Using the same C-terminal editing approach, we also obtained viable mutants for a wall-associated protein kinase (Os07g0493200) and a leucine-rich repeat receptor-like protein kinase (Os01g0239700), while the null mutations of these genes were lethal. These data suggest that protein kinase activity could be reduced by introducing frameshift mutations adjacent to the C-terminus, which could generate valuable resources for gene function studies and tune protein kinase activity for signaling pathway engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-024-00165-5.

17.
Genes Dis ; 11(5): 101148, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38993793

RESUMEN

As a pathological hallmark of type 2 diabetes mellitus (T2DM), islet amyloid is formed by the aggregation of islet amyloid polypeptide (IAPP). Endoplasmic reticulum (ER) stress interacts with IAPP aggregates and has been implicated in the pathogenesis of T2DM. To examine the role of ER stress in T2DM, we cloned the hIAPP promoter and analyzed its promoter activity in human ß-cells. We found that ER stress significantly enhanced hIAPP promoter activity and expression in human ß-cells via triggering X-box binding protein 1 (XBP1) splicing. We identified a binding site of XBP1 in the hIAPP promoter. Disruption of this binding site by substitution or deletion mutagenesis significantly diminished the effects of ER stress on hIAPP promoter activity. Blockade of XBP splicing by MKC3946 treatment inhibited ER stress-induced hIAPP up-regulation and improved human ß-cell survival and function. Our study uncovers a link between ER stress and IAPP at the transcriptional level and may provide novel insights into the role of ER stress in IAPP cytotoxicity and the pathogenesis of T2DM.

18.
World J Clin Cases ; 12(19): 3961-3970, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38994316

RESUMEN

BACKGROUND: Juvenile hemochromatosis (JH) is an early-onset, rare autosomal recessive disorder of iron overload observed worldwide that leads to damage in multiple organs. Pathogenic mutations in the hemojuvelin (HJV) gene are the major cause of JH. CASE SUMMARY: A 34-year-old male Chinese patient presented with liver fibrosis, diabetes, hypogonadotropic hypogonadism, hypophysis hypothyroidism, and skin hyperpigmentation. Biochemical test revealed a markedly elevated serum ferritin level of 4329 µg/L and a transferrin saturation rate of 95.4%. Targeted exome sequencing and Sanger sequencing revealed that the proband had a novel mutation c.863G>A (p.R288Q) in the HJV gene which was transmitted from his father, and two known mutations, c.18G>C (p.Q6H) and c.962_963delGCinsAA (p.C321*) in cis, which were inherited from his mother. The p.R288W mutation was previously reported to be pathogenic for hemochromatosis, which strongly supported the pathogenicity of p.R288Q reported for the first time in this case. After 72 wk of intensive phlebotomy therapy, the patient achieved a reduction in serum ferritin to 160.5 µg/L. The patient's clinical symptoms demonstrated a notable improvement. CONCLUSION: This study highlights the importance of screening for hemochromatosis in patients with diabetes and hypogonadotropic hypogonadism. It also suggests that long-term active phlebotomy could efficiently improve the prognosis in severe JH.

19.
Adv Sci (Weinh) ; : e2404266, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38986026

RESUMEN

Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.

20.
Biochem Pharmacol ; : 116448, 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39043335

RESUMEN

Many acyclic nucleoside phosphonates such as cidofovir, adefovir dipivoxil, tenofovir disoproxil fumarate, and tenofovir alafenamide have been marketed for the treatment or prophylaxis of infectious diseases. Here, this review highlights potent acyclic nucleoside phosphonates for their potential in the treatment of retrovirus (e.g., human immunodeficiency virus) and DNA virus (e.g., adeno-, papilloma-, herpes- and poxvirus) infections. If properly assessed and/or optimized, some potent acyclic nucleoside phosphonates can be possibly applied in the control of current and emerging infectious diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...