Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39250241

RESUMEN

Treatment of non-small cell lung cancer (NSCLC) has drastically changed in recent years owing to the robust anti-cancer effects of immune-checkpoint inhibitors (ICI). However, only 20% of NSCLC patients benefit from ICIs, highlighting the need to uncover the mechanisms mediating resistance. By analyzing the overall survival (OS) and mutational profiles of 424 NSCLC patients who received ICI treatments between 2015 and 2021, we determined that patients carrying a loss of function mutation in neurotrophic tyrosine kinase receptor 1 (NTRK1) had a prolonged OS compared to patients with wild-type NTRK1. Notably, suppression of the NTRK1 pathway by knockdown or Entrectinib treatment significantly enhanced ICI efficacy in mouse NSCLC models. Comprehensive T cell population analyses demonstrated that stem-like CD4+ T cells and effector CD4+ and CD8+ T cells were highly enriched in anti-PD-1 treated mice bearing tumors with decreased NTRK1 signaling. RNA sequencing revealed that suppression of NTRK1 signaling in tumor cells increased complement C3 expression, which enhanced the recruitment of T cells and myeloid cells and stimulated M1-like macrophage polarization in the tumor. Together, this study demonstrates a role for NTRK1 signaling in regulating crosstalk between tumor cells and immune cells in the tumor microenvironment and provides a potential therapeutic approach to overcomes immunotherapy resistance in NTRK1 wild-type NSCLC patients.

2.
medRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39281733

RESUMEN

Dynamic contrast enhanced (DCE) MRI is a non-invasive imaging technique that has become a quantitative standard for assessing tumor microvascular permeability. Through the application of a pharmacokinetic (PK) model to a series of T1-weighed MR images acquired after an injection of a contrast agent, several vascular permeability parameters can be quantitatively estimated. These parameters, including Ktrans, a measure of capillary permeability, have been widely implemented for assessing tumor vascular function as well as tumor therapeutic response. However, conventional PK modeling for translation of DCE MRI to PK vascular permeability parameter maps is complex and time-consuming for dynamic scans with thousands of pixels per image. In recent years, image-to-image conditional generative adversarial network (cGAN) is emerging as a robust approach in computer vision for complex cross-domain translation tasks. Through a sophisticated adversarial training process between two neural networks, image-to-image cGANs learn to effectively translate images from one domain to another, producing images that are indistinguishable from those in the target domain. In the present study, we have developed a novel image-to-image cGAN approach for mapping DCE MRI data to PK vascular permeability parameter maps. The DCE-to-PK cGAN not only generates high-quality parameter maps that closely resemble the ground truth, but also significantly reduces computation time over 1000-fold. The utility of the cGAN approach to map vascular permeability is validated using open-source breast cancer patient DCE MRI data provided by The Cancer Imaging Archive (TCIA). This data collection includes images and pathological analyses of breast cancer patients acquired before and after the first cycle of neoadjuvant chemotherapy (NACT). Importantly, in good agreement with previous studies leveraging this dataset, the percentage change of vascular permeability Ktrans derived from the DCE-to-PK cGAN enables early prediction of responders to NACT.

3.
Cancers (Basel) ; 16(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272945

RESUMEN

Brain metastasis is the most common intracranial malignancy in adults. The prognosis is extremely poor, partly because most patients have more than one brain lesion, and the currently available therapies are nonspecific or inaccessible to those occult metastases due to an impermeable blood-tumor barrier (BTB). Phosphatidylserine (PS) is externalized on the surface of viable endothelial cells (ECs) in tumor blood vessels. In this study, we have applied a PS-targeting antibody to assess brain metastases in mouse models. Fluorescence microscopic imaging revealed that extensive PS exposure was found exclusively on vascular ECs of brain metastases. The highly sensitive and specific binding of the PS antibody enables individual metastases, even micrometastases containing an intact BTB, to be clearly delineated. Furthermore, the conjugation of the PS antibody with a fluorescence dye, IRDye 800CW, or a radioisotope, 125I, allowed the clear visualization of individual brain metastases by optical imaging and autoradiography, respectively. In conclusion, we demonstrated a novel strategy for targeting brain metastases based on our finding that abundant PS exposure occurs on blood vessels of brain metastases but not on normal brain, which may be useful for the development of imaging and targeted therapeutics for brain metastases.

4.
bioRxiv ; 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37546807

RESUMEN

The presence of cell surface protein CD47 allows cancer cells to evade innate and adaptive immune surveillance resulting in metastatic spread. CD47 binds to and activates SIRPα on the surface of myeloid cells, inhibiting their phagocytic activity. On the other hand, CD47 binds the matricellular protein Thrombospondin-1, limiting T-cell activation. Thus, blocking CD47 is a potential therapeutic strategy for preventing brain metastasis. To test this hypothesis, breast cancer patient biopsies were stained with antibodies against CD47 to determine differences in protein expression. An anti-CD47 antibody was used in a syngeneic orthotopic triple-negative breast cancer model, and CD47 null mice were used in a breast cancer brain metastasis model by intracardiac injection of the E0771-Br-Luc cell line. Immunohistochemical staining of patient biopsies revealed an 89% increase in CD47 expression in metastatic brain tumors compared to normal adjacent tissue (p ≤ 0.05). Anti-CD47 treatment in mice bearing brain metastatic 4T1br3 orthotopic tumors reduced tumor volume and tumor weight by over 50% compared to control mice (p ≤ 0.05) and increased IBA1 macrophage/microglia marker 5-fold in tumors compared to control (p ≤ 0.05). Additionally, CD47 blockade increased the M1/M2 macrophage ratio in tumors 2.5-fold (p ≤ 0.05). CD47 null mice had an 89% decrease in metastatic brain burden (p ≤ 0.05) compared to control mice in a brain metastasis model. Additionally, RNA sequencing revealed several uniquely expressed genes and significantly enriched genes related to tissue development, cell death, and cell migration tumors treated with anti-CD47 antibodies. Thus, demonstrating that CD47 blockade affects cancer cell and tumor microenvironment signaling to limit metastatic spread and may be an effective therapeutic for triple-negative breast cancer brain metastasis.

5.
Cancers (Basel) ; 15(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37345039

RESUMEN

The purpose of this study is to further validate the utility of our previously developed CNN in an alternative small animal model of BM through transfer learning. Unlike the glioma model, the BM mouse model develops multifocal intracranial metastases, including both contrast enhancing and non-enhancing lesions on DCE MRI, thus serving as an excellent brain tumor model to study tumor vascular permeability. Here, we conducted transfer learning by transferring the previously trained GBM CNN to DCE MRI datasets of BM mice. The CNN was re-trained to learn about the relationship between BM DCE images and target permeability maps extracted from the Extended Tofts Model (ETM). The transferred network was found to accurately predict BM permeability and presented with excellent spatial correlation with the target ETM PK maps. The CNN model was further tested in another cohort of BM mice treated with WBRT to assess vascular permeability changes induced via radiotherapy. The CNN detected significantly increased permeability parameter Ktrans in WBRT-treated tumors (p < 0.01), which was in good agreement with the target ETM PK maps. In conclusion, the proposed CNN can serve as an efficient and accurate tool for characterizing vascular permeability and treatment responses in small animal brain tumor models.

6.
Cancers (Basel) ; 15(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37174093

RESUMEN

The brain is one of the most common metastatic sites among breast cancer patients, especially in those who have Her2-positive or triple-negative tumors. The brain microenvironment has been considered immune privileged, and the exact mechanisms of how immune cells in the brain microenvironment contribute to brain metastasis remain elusive. In this study, we found that neutrophils are recruited and influenced by c-Met high brain metastatic cells in the metastatic sites, and depletion of neutrophils significantly suppressed brain metastasis in animal models. Overexpression of c-Met in tumor cells enhances the secretion of a group of cytokines, including CXCL1/2, G-CSF, and GM-CSF, which play critical roles in neutrophil attraction, granulopoiesis, and homeostasis. Meanwhile, our transcriptomic analysis demonstrated that conditioned media from c-Met high cells significantly induced the secretion of lipocalin 2 (LCN2) from neutrophils, which in turn promotes the self-renewal of cancer stem cells. Our study unveiled the molecular and pathogenic mechanisms of how crosstalk between innate immune cells and tumor cells facilitates tumor progression in the brain, which provides novel therapeutic targets for treating brain metastasis.

7.
Nano Res ; 16(4): 5300-5310, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37228440

RESUMEN

Despite therapeutic advancements, the prognosis of locally advanced non-small cell lung cancer (LANSCLC), which has invaded multiple lobes or the other lung and intrapulmonary lymph nodes, remains poor. The emergence of immunotherapy with immune checkpoint blockade (ICB) is transforming cancer treatment. However, only a fraction of lung cancer patients benefit from ICB. Significant clinical evidence suggests that the proinflammatory tumor microenvironment (TME) and programmed death-ligand 1 (PD-L1) expression correlate positively with response to the PD-1/PD-L1 blockade. We report here a liposomal nanoparticle loaded with cyclic dinucleotide and aerosolized (AeroNP-CDN) for inhalation delivery to deep-seated lung tumors and target CDN to activate stimulators of interferon (IFN) genes in macrophages and dendritic cells (DCs). Using a mouse model that recapitulates the clinical LANSCLC, we show that AeroNP-CDN efficiently mitigates the immunosuppressive TME by reprogramming tumor-associated macrophage from the M2 to M1 phenotype, activating DCs for effective tumor antigen presentation and increasing tumor-infiltrating CD8+ T cells for adaptive anticancer immunity. Intriguingly, activation of interferons by AeroNP-CDN also led to increased PD-L1 expression in lung tumors, which, however, set a stage for response to anti-PD-L1 treatment. Indeed, anti-PD-L1 antibody-mediated blockade of IFNs-induced immune inhibitory PD-1/PD-L1 signaling further prolonged the survival of the LANSCLC-bearing mice. Importantly, AeroNP-CDN alone or combination immunotherapy was safe without local or systemic immunotoxicity. In conclusion, this study demonstrates a potential nano-immunotherapy strategy for LANSCLC, and mechanistic insights into the evolution of adaptive immune resistance provide a rational combination immunotherapy to overcome it.

8.
Nat Cell Biol ; 24(8): 1291-1305, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35915159

RESUMEN

The epidermal growth factor receptor (EGFR) is a prime oncogene that is frequently amplified in glioblastomas. Here we demonstrate a new tumour-suppressive function of EGFR in EGFR-amplified glioblastomas regulated by EGFR ligands. Constitutive EGFR signalling promotes invasion via activation of a TAB1-TAK1-NF-κB-EMP1 pathway, resulting in large tumours and decreased survival in orthotopic models. Ligand-activated EGFR promotes proliferation and surprisingly suppresses invasion by upregulating BIN3, which inhibits a DOCK7-regulated Rho GTPase pathway, resulting in small hyperproliferating non-invasive tumours and improved survival. Data from The Cancer Genome Atlas reveal that in EGFR-amplified glioblastomas, a low level of EGFR ligands confers a worse prognosis, whereas a high level of EGFR ligands confers an improved prognosis. Thus, increased EGFR ligand levels shift the role of EGFR from oncogene to tumour suppressor in EGFR-amplified glioblastomas by suppressing invasion. The tumour-suppressive function of EGFR can be activated therapeutically using tofacitinib, which suppresses invasion by increasing EGFR ligand levels and upregulating BIN3.


Asunto(s)
Glioblastoma , Proteínas de Microfilamentos/metabolismo , Línea Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Humanos , Ligandos , Oncogenes/genética , Regulación hacia Arriba
9.
Clin Transl Med ; 12(3): e774, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35297203

RESUMEN

Clinical evidence indicates that the microenvironment in malignant pleural effusion (MPE) is immunologically cold, which impairs tumour immunosurveillance and antitumor immune response to immune checkpoint blockade (ICB). In a recent issue of Nature Nanotechnology, Liu et al. demonstrate a new nanotechnological approach to effectively mitigate the immune cold MPE and provide insights into its mechanism of action through single-cell RNA-sequencing.


Asunto(s)
Neoplasias Pulmonares , Derrame Pleural Maligno , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Derrame Pleural Maligno/tratamiento farmacológico , Derrame Pleural Maligno/genética , ARN/farmacología , ARN/uso terapéutico , Microambiente Tumoral
10.
Front Biosci (Landmark Ed) ; 27(3): 99, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35345331

RESUMEN

BACKGROUND: Dynamic contrast-enhanced (DCE) MRI is widely used to assess vascular perfusion and permeability in cancer. In small animal applications, conventional modeling of pharmacokinetic (PK) parameters from DCE MRI images is complex and time consuming. This study is aimed at developing a deep learning approach to fully automate the generation of kinetic parameter maps, Ktrans (volume transfer coefficient) and Vp (blood plasma volume ratio), as a potential surrogate to conventional PK modeling in mouse brain tumor models based on DCE MRI. METHODS: Using a 7T MRI, DCE MRI was conducted in U87 glioma xenografts growing orthotopically in nude mice. Vascular permeability Ktrans and Vp maps were generated using the classical Tofts model as well as the extended-Tofts model. These vascular permeability maps were then processed as target images to a twenty-four layer convolutional neural network (CNN). The CNN was trained on T1-weighted DCE images as source images and designed with parallel dual pathways to capture multiscale features. Furthermore, we performed a transfer study of this glioma trained CNN on a breast cancer brain metastasis (BCBM) mouse model to assess the potential of the network for alternative brain tumors. RESULTS: Our data showed a good match for both Ktrans and Vp maps generated between the target PK parameter maps and the respective CNN maps for gliomas. Pixel-by-pixel analysis revealed intratumoral heterogeneous permeability, which was consistent between the CNN and PK models. The utility of the deep learning approach was further demonstrated in the transfer study of BCBM. CONCLUSIONS: Because of its rapid and accurate estimation of vascular PK parameters directly from the DCE dynamic images without complex mathematical modeling, the deep learning approach can serve as an efficient tool to assess tumor vascular permeability to facilitate small animal brain tumor research.


Asunto(s)
Neoplasias Encefálicas , Aprendizaje Profundo , Animales , Neoplasias Encefálicas/patología , Medios de Contraste , Humanos , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Desnudos
11.
Nat Nanotechnol ; 17(2): 206-216, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34916656

RESUMEN

Malignant pleural effusion (MPE) is indicative of terminal malignancy with a uniformly fatal prognosis. Often, two distinct compartments of tumour microenvironment, the effusion and disseminated pleural tumours, co-exist in the pleural cavity, presenting a major challenge for therapeutic interventions and drug delivery. Clinical evidence suggests that MPE comprises abundant tumour-associated myeloid cells with the tumour-promoting phenotype, impairing antitumour immunity. Here we developed a liposomal nanoparticle loaded with cyclic dinucleotide (LNP-CDN) for targeted activation of stimulators of interferon genes signalling in macrophages and dendritic cells and showed that, on intrapleural administration, they induce drastic changes in the transcriptional landscape in MPE, mitigating the immune cold MPE in both effusion and pleural tumours. Moreover, combination immunotherapy with blockade of programmed death ligand 1 potently reduced MPE volume and inhibited tumour growth not only in the pleural cavity but also in the lung parenchyma, conferring significantly prolonged survival of MPE-bearing mice. Furthermore, the LNP-CDN-induced immunological effects were also observed with clinical MPE samples, suggesting the potential of intrapleural LNP-CDN for clinical MPE immunotherapy.


Asunto(s)
Antígeno B7-H1/farmacología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Derrame Pleural Maligno/tratamiento farmacológico , Inmunidad Adaptativa/efectos de los fármacos , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/química , Antígeno B7-H1/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Humanos , Inhibidores de Puntos de Control Inmunológico/química , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunidad Innata/efectos de los fármacos , Inmunoterapia , Interferones/genética , Ratones , Nanopartículas/uso terapéutico , Cavidad Pleural/efectos de los fármacos , Cavidad Pleural/inmunología , Cavidad Pleural/patología , Derrame Pleural Maligno/genética , Derrame Pleural Maligno/inmunología , Derrame Pleural Maligno/patología , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Nat Commun ; 12(1): 7014, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853306

RESUMEN

Inhibition of RTK pathways in cancer triggers an adaptive response that promotes therapeutic resistance. Because the adaptive response is multifaceted, the optimal approach to blunting it remains undetermined. TNF upregulation is a biologically significant response to EGFR inhibition in NSCLC. Here, we compared a specific TNF inhibitor (etanercept) to thalidomide and prednisone, two drugs that block TNF and also other inflammatory pathways. Prednisone is significantly more effective in suppressing EGFR inhibition-induced inflammatory signals. Remarkably, prednisone induces a shutdown of bypass RTK signaling and inhibits key resistance signals such as STAT3, YAP and TNF-NF-κB. Combined with EGFR inhibition, prednisone is significantly superior to etanercept or thalidomide in durably suppressing tumor growth in multiple mouse models, indicating that a broad suppression of adaptive signals is more effective than blocking a single component. We identify prednisone as a drug that can effectively inhibit adaptive resistance with acceptable toxicity in NSCLC and other cancers.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Glucocorticoides/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Receptores ErbB/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Prednisona , Factor de Transcripción STAT3/metabolismo , Talidomida , Inhibidores del Factor de Necrosis Tumoral , Regulación hacia Arriba
13.
Nat Cancer ; 1(4): 394-409, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-33269343

RESUMEN

EGFR inhibition is an effective treatment in the minority of non-small cell lung cancer (NSCLC) cases harboring EGFR-activating mutations, but not in EGFR wild type (EGFRwt) tumors. Here, we demonstrate that EGFR inhibition triggers an antiviral defense pathway in NSCLC. Inhibiting mutant EGFR triggers Type I IFN-I upregulation via a RIG-I-TBK1-IRF3 pathway. The ubiquitin ligase TRIM32 associates with TBK1 upon EGFR inhibition, and is required for K63-linked ubiquitination and TBK1 activation. Inhibiting EGFRwt upregulates interferons via an NF-κB-dependent pathway. Inhibition of IFN signaling enhances EGFR-TKI sensitivity in EGFR mutant NSCLC and renders EGFRwt/KRAS mutant NSCLC sensitive to EGFR inhibition in xenograft and immunocompetent mouse models. Furthermore, NSCLC tumors with decreased IFN-I expression are more responsive to EGFR TKI treatment. We propose that IFN-I signaling is a major determinant of EGFR-TKI sensitivity in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSCLC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Receptores ErbB , Neoplasias Pulmonares , Transducción de Señal , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Inhibidores de Proteínas Quinasas/farmacología
14.
Nat Commun ; 10(1): 5108, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31704921

RESUMEN

Mounting evidence suggests that the tumor microenvironment is profoundly immunosuppressive. Thus, mitigating tumor immunosuppression is crucial for inducing sustained antitumor immunity. Whereas previous studies involved intratumoral injection, we report here an inhalable nanoparticle-immunotherapy system targeting pulmonary antigen presenting cells (APCs) to enhance anticancer immunity against lung metastases. Inhalation of phosphatidylserine coated liposome loaded with STING agonist cyclic guanosine monophosphate-adenosine monophosphate (NP-cGAMP) in mouse models of lung metastases enables rapid distribution of NP-cGAMP to both lungs and subsequent uptake by APCs without causing immunopathology. NP-cGAMP designed for enhanced cytosolic release of cGAMP stimulates STING signaling and type I interferons production in APCs, resulting in the pro-inflammatory tumor microenvironment in multifocal lung metastases. Furthermore, fractionated radiation delivered to one tumor-bearing lung synergizes with inhaled NP-cGAMP, eliciting systemic anticancer immunity, controlling metastases in both lungs, and conferring long-term survival in mice with lung metastases and with repeated tumor challenge.


Asunto(s)
Células Presentadoras de Antígenos/efectos de los fármacos , Inmunoterapia , Neoplasias Pulmonares/secundario , Pulmón/efectos de los fármacos , Melanoma Experimental/secundario , Proteínas de la Membrana/agonistas , Nanopartículas , Nucleótidos Cíclicos/farmacología , Radioterapia , Administración por Inhalación , Animales , Células Presentadoras de Antígenos/inmunología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Interferón Tipo I/efectos de los fármacos , Interferón Tipo I/inmunología , Liposomas , Pulmón/inmunología , Pulmón/efectos de la radiación , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , Nucleótidos Cíclicos/administración & dosificación , Fosfatidilserinas
15.
Neuro Oncol ; 21(12): 1529-1539, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31363754

RESUMEN

BACKGROUND: Glioblastoma (GBM) is the most common primary malignant adult brain tumor. Temozolomide (TMZ) is the standard of care and is most effective in GBMs that lack the DNA repair protein O6-methylguanine-DNA methyltransferase (MGMT). Moreover, even initially responsive tumors develop a secondary resistance to TMZ and become untreatable. Since aberrant epidermal growth factor receptor (EGFR) signaling is widespread in GBM, EGFR inhibition has been tried in multiple clinical trials without success. We recently reported that inhibiting EGFR leads to increased secretion of tumor necrosis factor (TNF) and activation of a survival pathway in GBM. Here, we compare the efficacy of TMZ versus EGFR plus TNF inhibition in an orthotopic mouse model of GBM. METHODS: We use an orthotopic model to examine the efficacy of TMZ versus EGFR plus TNF inhibition in multiple subsets of GBMs, including MGMT methylated and unmethylated primary GBMs, recurrent GBMs, and GBMs rendered experimentally resistant to TMZ. RESULTS: The efficacy of the 2 treatments was similar in MGMT methylated GBMs. However, in MGMT unmethylated GBMs, a combination of EGFR plus TNF inhibition was more effective. We demonstrate that the 2 treatment approaches target distinct and non-overlapping pathways. Thus, importantly, EGFR plus TNF inhibition remains effective in TMZ-resistant recurrent GBMs and in GBMs rendered experimentally resistant to TMZ. CONCLUSION: EGFR inhibition combined with a blunting of the accompanying TNF-driven adaptive response could be a viable therapeutic approach in MGMT unmethylated and recurrent EGFR-expressing GBMs.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Afatinib/administración & dosificación , Animales , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Receptores ErbB/antagonistas & inhibidores , Femenino , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Temozolomida/administración & dosificación , Talidomida/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Int J Radiat Biol ; 95(3): 338-346, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30499763

RESUMEN

PURPOSE: To assess early changes in brain metastasis in response to whole brain radiotherapy (WBRT) by longitudinal Magnetic Resonance Imaging (MRI). MATERIALS AND METHODS: Using a 7T system, MRI examinations of brain metastases in a breast cancer MDA-MD231-Br mouse model were conducted before and 24 hours after 3 daily fractionations of 4 Gy WBRT. Besides anatomic MRI, diffusion-weighted (DW) MRI and dynamic contrast-enhanced (DCE) MRI were applied to study cytotoxic effect and blood-tumor-barrier (BTB) permeability change, respectively. RESULTS: Before treatment, high-resolution T2-weighted images revealed hyperintense multifocal lesions, many of which (∼50%) were not enhanced on T1-weighted contrast images, indicating intact BTB in the brain metastases. While no difference in the number of new lesions was observed, WBRT-treated tumors were significantly smaller than sham controls (p < .05). DW MRI detected significant increase in apparent diffusion coefficient (ADC) in WBRT tumors (p < .05), which correlated with elevated caspase 3 staining of apoptotic cells. Many lesions remained non-enhanced post WBRT. However, quantitative DCE MRI analysis showed significantly higher permeability parameter, Ktrans, in WBRT than the sham group (p < .05), despite marked spatial heterogeneity. CONCLUSIONS: MRI allowed non-invasive assessments of WBRT induced changes in BTB permeability, which may provide useful information for potential combination treatment.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética , Animales , Neoplasias Encefálicas/diagnóstico por imagen , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Methods Mol Biol ; 1790: 197-208, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29858793

RESUMEN

Cerenkov luminescence imaging (CLI) is a relatively new imaging modality that utilizes conventional optical imaging instrumentation to detect Cerenkov radiation derived from standard and often clinically approved radiotracers. Its research versatility, low cost, and ease of use have increased its popularity within the molecular imaging community and at institutions that are interested in conducting radiotracer-based molecular imaging research, but that lack the necessary resources and infrastructure. Here, we provide a description of the materials and procedures necessary to conduct a Cerenkov luminescence imaging experiment using a variety of imaging instrumentation, radionuclides, and animal models.


Asunto(s)
Mediciones Luminiscentes/métodos , Imagen Multimodal/métodos , Neoplasias/patología , Fantasmas de Imagen , Radiofármacos/metabolismo , Animales , Humanos , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Guías de Práctica Clínica como Asunto
18.
J Clin Invest ; 128(6): 2500-2518, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29613856

RESUMEN

Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Proteínas de Neoplasias , Neoplasias Experimentales/metabolismo , Factor de Necrosis Tumoral alfa , Células A549 , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Neoplasias Experimentales/terapia , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
19.
Nat Neurosci ; 20(8): 1074-1084, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28604685

RESUMEN

Aberrant epidermal growth factor receptor (EGFR) signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased tumor necrosis factor (TNF) secretion, which leads to activation in turn of c-Jun N-terminal kinase (JNK), the Axl receptor tyrosine kinase and extracellular signal-regulated kinases (ERK). Inhibition of this adaptive axis at multiple nodes rendered glioma cells with primary resistance sensitive to EGFR inhibition. Our findings provide a possible explanation for the failures of anti-EGFR therapy in GBM and suggest a new approach to the treatment of EGFR-expressing GBM using a combination of EGFR and TNF inhibition.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glioblastoma/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Transducción de Señal , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Quinasas MAP Reguladas por Señal Extracelular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Humanos , Transducción de Señal/efectos de los fármacos
20.
Mol Imaging ; 16: 1536012117708722, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28654387

RESUMEN

Phosphatidylserine (PS), the most abundant anionic phospholipid in cell membrane, is strictly confined to the inner leaflet in normal cells. However, this PS asymmetry is found disruptive in many tumor vascular endothelial cells. We discuss the underlying mechanisms for PS asymmetry maintenance in normal cells and its loss in tumor cells. The specificity of PS exposure in tumor vasculature but not normal blood vessels may establish it a useful biomarker for cancer molecular imaging. Indeed, utilizing PS-targeting antibodies, multiple imaging probes have been developed and multimodal imaging data have shown their high tumor-selective targeting in various cancers. There is a critical need for improved diagnosis and therapy for brain tumors. We have recently established PS-targeted nanoplatforms, aiming to enhance delivery of imaging contrast agents across the blood-brain barrier to facilitate imaging of brain tumors. Advantages of using the nanodelivery system, in particular, lipid-based nanocarriers, are discussed here. We also describe our recent research interest in developing PS-targeted nanotheranostics for potential image-guided drug delivery to treat brain tumors.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Imagen Molecular/métodos , Fosfatidilserinas/análisis , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA