Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 608211, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34220874

RESUMEN

Frequent extreme climate events have attracted considerable attention around the world. Malus sieversii in Xinjiang is the ancestor of cultivated apple, and it is mainly distributed in the Ili river valley at end of the Tianshan Mountains. Wild fruit forests have been degraded, but the cause remains unclear. In order to identify whether extreme climate events caused this degradation reanalysis data and atmospheric circulation indices were used to determine the trends and the reasons for extreme climate changes. Subsequently, we further investigated the effect of extreme climate events on wild fruit forest using characteristics of extreme climate indices and tree-ring chronology. We found increasing trends in both extreme precipitation and warm indices, and decreasing trends in cool indices. Extreme climate events were mainly associated with the Atlantic Multidecadal Oscillation (AMO). Analysis of data of wind and geopotential height field at 500 hPa showed that strengthening wind, increasing geopotential height, cyclone and anti-cyclone circulation drivers contributed to extreme climate events. In the non-degraded region, there were significant positive correlations between tree-ring chronology and both extreme precipitation and extreme warm indices (except for warm spell duration indicator). The other extreme indices (except for heavy rain days) had a large correlation range with tree-rings in a 4-8-year period. These results indicated that extreme precipitation and extreme warm indices intensified M. sieversii growth of the non-degraded region on multi-time scales. In contrast, the degraded region showed insignificant negative relationship between tree-ring chronology and both extreme precipitation and extreme warm indices [except for warm spell duration index (WSDI)], and significant negative correlations in a 4-8-year period were detected between tree-ring chronology and most of the extreme precipitation indices, including heavy rain days, very wet days, cold spell duration indicator, simple precipitation intensity index (SDII), and annual total precipitation. Under the long disturbance of inappropriate anthropic activities, extreme climate has caused the outbreak of pests and diseases resulting in the degeneration of wild fruit forest. Our study provides scientific guidance for the ecosystem conservation in wild fruit forest in China, and also across the region.

2.
J Hazard Mater ; 420: 126559, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34252660

RESUMEN

The natural attenuation of petroleum hydrocarbons is inseparable from the action of microorganisms, while the degradation methods and ecological strategies of microorganisms in petroleum-contaminated aquifers are still under debate. In the present study, 16 S rRNA sequencing and quantitative real-time polymerase chain reaction were used to assess the potential microbial degradation of petroleum hydrocarbons, and the ecological strategy of microorganisms under petroleum stress was analyzed through a co-occurrence network. The results showed that the microbial community in sediments exhibit higher efficiency and stability and stronger ecological function than that in groundwater. Keystone species coordinated with the community to execute ecosystem processes and tended to choose a K-strategy to survive, with the aquifer sediment being the main site of petroleum hydrocarbon degradation. Under natural conditions, the presence of petroleum hydrocarbons at concentrations higher than 126 µg kg-1 and 5557 µg kg-1 was not conducive to the microbial degradation of polycyclic aromatic hydrocarbons and alkanes, respectively. These results can be used as a reference for an enhanced bioremediation of contaminated groundwater. Overall, these findings provide support to managers for developing environmental management strategies.


Asunto(s)
Agua Subterránea , Microbiota , Contaminación por Petróleo , Petróleo , Biodegradación Ambiental , Hidrocarburos , Contaminación por Petróleo/análisis
3.
Sci Total Environ ; 787: 147649, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34000547

RESUMEN

Landfills can cause groundwater contamination, the pollution characteristics in groundwater near landfill sites have been extensively investigated, while the rapid identification of leachate leakage remained unclear. Comprehensively characterizing dissolved organic matter (DOM) is crucial for tracing the source, species, and migration of contaminants within groundwater and protecting groundwater sources. Here, we showed that DOM composition from newer landfills was mainly composed of newly-produced tryptophan and tyrosine, and protein-like and humic-like substances were more abundant in landfills that were relatively older. DOM in landfill groundwater was initially dominated by outputs from microbial activities, followed by terrigenous input. Leaked leachate contained an additional dye-derived fluorescent matter at the excitation/emission wavelength of 240-260/440-460 nm that was absent in uncontaminated groundwater. Leachate leakage increased the concentrations of humic-like substance, DOM molecular weight, and microbial activity in the downstream groundwater, resulting in the microorganisms rapidly multiply and secrete large amounts of microbial metabolism by-products, making them suitable indicators of groundwater pollution. Three criteria were proposed to establish an interpretable fluorescence method to identify leachate pollution. The obtained results provide a novel insight into not only the monitoring, early warning, and identification but also the transport, fate and removal or transformation of groundwater leachate in landfills.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...