Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 461: 140904, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39181054

RESUMEN

Triploid Oncorhynchus mykiss is an important economic fish worldwide. Fishing stress can affect its growth and meat quality. This study first explored the effects of fishing stress on fatty acid and amino acid in triploid O. mykiss. Results showed fishing stress significantly reduced the content of docosadienoic acid, Gly, Arg, and DAA (P < 0.05). Targeted lipidomics analysis furthered suggested that some lipid molecules belonging to TG, DG, PC, Cer, ChE, and So were significantly up-regulated; while some lipid molecules belonging to Cer, LPE, LPC, PS, PC, and SM were significantly down-regulated, suggesting an accelerated glycolipid metabolism. Eventually, the glycolipid metabolism-related enzyme activity and gene expressions were examined, and the results indicated that O. mykiss was anti-oxidative stress by affecting relevant glycolipid metabolism signaling pathways and participating in cellular redox homeostasis. Findings of this study provide a theoretical foundation for further investigation into the mechanisms through which fishing stress affects O. mykiss.


Asunto(s)
Aminoácidos , Ácidos Grasos , Glucolípidos , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/metabolismo , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crecimiento & desarrollo , Aminoácidos/metabolismo , Aminoácidos/análisis , Glucolípidos/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Triploidía , Estrés Fisiológico , Metabolismo de los Lípidos , Explotaciones Pesqueras
2.
Genes Dev ; 38(13-14): 614-630, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038850

RESUMEN

The alternative lengthening of telomeres (ALT) pathway maintains telomere length in a significant fraction of cancers that are associated with poor clinical outcomes. A better understanding of ALT mechanisms is therefore necessary for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins contributes to the formation of ALT telomere-associated PML bodies (APBs), in which telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, it is still unknown whether-and if so, how-SUMO supports ALT beyond APB formation. Here, we show that SUMO condensates that contain DNA repair proteins enable telomere maintenance in the absence of APBs. In PML knockout ALT cell lines that lack APBs, we found that SUMOylation is required for manifesting ALT features independent of PML and APBs. Chemically induced telomere targeting of SUMO produces condensate formation and ALT features in PML-null cells. This effect requires both SUMOylation and interactions between SUMO and SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are associated with the accumulation of DNA repair proteins, including Rad52, Rad51AP1, RPA, and BLM, at telomeres. Furthermore, Rad52 can undergo phase separation, enrich SUMO at telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that SUMO condensate formation promotes collaboration among DNA repair factors to support ALT telomere maintenance without PML. Given the promising effects of SUMOylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.


Asunto(s)
Reparación del ADN , Proteína de la Leucemia Promielocítica , Sumoilación , Homeostasis del Telómero , Telómero , Humanos , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Telómero/metabolismo , Línea Celular Tumoral , Proteína SUMO-1/metabolismo , Proteína SUMO-1/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Línea Celular , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética
3.
Front Cell Infect Microbiol ; 14: 1373004, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938880

RESUMEN

In recent years, a growing body of research has confirmed that the gut microbiota plays a major role in the maintenance of human health and disease. A gut microbiota imbalance can lead to the development of many diseases, such as pregnancy complications, adverse pregnancy outcomes, polycystic ovary syndrome, endometriosis, and cancer. Short-chain fatty acids are metabolites of specific intestinal bacteria and are crucial for maintaining intestinal homeostasis and regulating metabolism and immunity. Endometriosis is the result of cell proliferation, escape from immune surveillance, and invasive metastasis. There is a strong correlation between the anti-proliferative and anti-inflammatory effects of short-chain fatty acids produced by gut microbes and the development of endometriosis. Given that the mechanism of action of gut microbiota and Short-chain fatty acids in endometriosis remain unclear, this paper aims to provide a comprehensive review of the complex interactions between intestinal flora, short-chain fatty acids and endometriosis. In addition, we explored potential microbial-based treatment strategies for endometriosis, providing new insights into the future development of diagnostic tests and prevention and treatment methods for endometriosis.


Asunto(s)
Endometriosis , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Endometriosis/metabolismo , Endometriosis/microbiología , Humanos , Femenino , Ácidos Grasos Volátiles/metabolismo , Animales , Bacterias/metabolismo , Probióticos
4.
bioRxiv ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38463993

RESUMEN

Alternative lengthening of telomeres (ALT) pathway maintains telomeres in a significant fraction of cancers associated with poor clinical outcomes. A better understanding of ALT mechanisms can provide a basis for developing new treatment strategies for ALT cancers. SUMO modification of telomere proteins plays a critical role in the formation of ALT telomere-associated PML bodies (APBs), where telomeres are clustered and DNA repair proteins are enriched to promote homology-directed telomere DNA synthesis in ALT. However, whether and how SUMO contributes to ALT beyond APB formation remains elusive. Here, we report that SUMO promotes collaboration among DNA repair proteins to achieve APB-independent telomere maintenance. By using ALT cancer cells with PML protein knocked out and thus devoid of APBs, we show that sumoylation is required for manifesting ALT features, including telomere clustering and telomeric DNA synthesis, independent of PML and APBs. Further, small molecule-induced telomere targeting of SUMO produces signatures of phase separation and ALT features in PML null cells in a manner depending on both sumoylation and SUMO interaction with SUMO interaction motifs (SIMs). Mechanistically, SUMO-induced effects are linked to the enrichment of DNA repair proteins, including Rad52, Rad51AP1, and BLM, to the SUMO-containing telomere foci. Finally, we find that Rad52 can undergo phase separation, enrich SUMO on telomeres, and promote telomere DNA synthesis in collaboration with the BLM helicase in a SUMO-dependent manner. Collectively, our findings suggest that, in addition to forming APBs, SUMO also promotes collaboration among DNA repair proteins to support telomere maintenance in ALT cells. Given the promising effects of sumoylation inhibitors in cancer treatment, our findings suggest their potential use in perturbing telomere maintenance in ALT cancer cells.

5.
Nat Commun ; 15(1): 2165, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38461301

RESUMEN

The telomere repeat-containing RNA (TERRA) forms R-loops to promote homology-directed DNA synthesis in the alternative lengthening of telomere (ALT) pathway. Here we report that TERRA contributes to ALT via interacting with the lysine-specific demethylase 1A (LSD1 or KDM1A). We show that LSD1 localizes to ALT telomeres in a TERRA dependent manner and LSD1 function in ALT is largely independent of its demethylase activity. Instead, LSD1 promotes TERRA recruitment to ALT telomeres via RNA binding. In addition, LSD1 and TERRA undergo phase separation, driven by interactions between the RNA binding properties of LSD1 and the G-quadruplex structure of TERRA. Importantly, the formation of TERRA-LSD1 condensates enriches the R-loop stimulating protein Rad51AP1 and increases TERRA-containing R-loops at telomeres. Our findings suggest that LSD1-TERRA phase separation enhances the function of R-loop regulatory molecules for ALT telomere maintenance, providing a mechanism for how the biophysical properties of histone modification enzyme-RNA interactions impact chromatin function.


Asunto(s)
Neoplasias , Estructuras R-Loop , ARN Largo no Codificante , Homeostasis del Telómero , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Separación de Fases , ARN Largo no Codificante/genética , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero/genética , Humanos
6.
Cell Mol Biol (Noisy-le-grand) ; 70(1): 128-133, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38372108

RESUMEN

The purpose of this study was to analyze the correlation between vaginal flora and immune function Type 1 helper T cells/Type 2 helper T cells imbalance in females having HPV infections at high risk within the female reproductive tract. We selected 150 female patients who visited our hospital for reproductive tract inflammation between March 2019 and March 2021. They were divided into high-risk HPV-positive and high-risk HPV-negative groups according to the results of the HPV tests. Vaginal flora composition, density, diversity, and Th1/Th2 immune cell cytokine expression were assessed, and their correlations were analyzed. Compared to the HPV-negative group at high risk, the HPV-positive group at high risk exhibited significantly higher rates of Lactobacillius abnormalities, Chlamydia trachomatis and Mycoplasma urealyticum positivity(P<0.05). However, no statistically significant differences in the rates of Neisseria gonorrhoeae, bacterial vaginosis, mould, and trichomonad positivity were observed in both groups (P>0.05). The high-risk HPV-positive group displayed significantly higher rates of abnormal vaginal flora density and diversity compared to the HPV-negative group at high risk (P < 0.05). Compared to the HPV-negative group at high risk, the HPV-positive group at high risk exhibited significantly lower expression levels of Th1, Th1/Th2, IFN-γ, and IL-2 and higher expression levels of Th2, IL-4, and IL-10(P<0.05). Among patients having HPV infections at high risk, those with abnormal vaginal flora had lower expression levels of Th1, Th1/Th2, IFN-γ, and IL-2 and higher expression levels of Th2, IL-4, and IL-10 compared to those with normal vaginal flora, all of which were statistically significant(P<0.05). Vaginal flora dysbiosis was correlated with Th1/Th2 imbalance (P<0.05). Women with high-risk HPV infections in the female reproductive tract exhibit abnormal vaginal flora and immune function Th1/Th2 imbalance, characterized by a shift from Th1 to Th2. Moreover, there is a close correlation between vaginal flora dysbiosis and immune function Th1/Th2 imbalance.


Asunto(s)
Interleucina-10 , Infecciones por Papillomavirus , Humanos , Femenino , Interleucina-10/metabolismo , Interleucina-2 , Disbiosis/metabolismo , Interleucina-4/metabolismo , Células TH1/metabolismo , Inmunidad , Células Th2/metabolismo
7.
Oncol Lett ; 26(4): 456, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37736556

RESUMEN

Ovarian cancer (OC) is a common and highly prevalent malignant tumor in women, associated with a high mortality rate, easy recurrence and easy metastasis, which is predominantly at an advanced stage when detected in patients. This renders the cancer more difficult to treat, and consequently it is also associated with a low survival rate, being the malignancy with the highest mortality rate among the various gynecological tumors. As an important factor affecting the development and metastasis of OC, understanding the underlying mechanism(s) through which it is formed and developed is crucial in terms of its treatment. At present, the therapeutic methods of angiogenic mimicry for OC remain in the preliminary stages of exploration and have not been applied in actual clinical practice. In the present review, various signaling pathways and factors affecting angiogenic mimicry in OC were described, and the chemical synthetic drugs, natural compound extracts, small-molecule protein antibodies and their associated targets, and so on, that target angiogenic mimicry in the treatment of OC, were discussed. The purpose of this review was to provide new research ideas and potential theoretical support for the discovery of novel therapeutic targets for OC that may be applied in the clinic, with the aim of effectively reducing its metastasis and recurrence rates.

9.
J Vis Exp ; (170)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33900288

RESUMEN

Chromatin-associated condensates are implicated in many nuclear processes, but the underlying mechanisms remain elusive. This protocol describes a chemically-induced protein dimerization system to create condensates on telomeres. The chemical dimerizer consists of two linked ligands that can each bind to a protein: Halo ligand to Halo-enzyme and trimethoprim (TMP) to E. coli dihydrofolate reductase (eDHFR), respectively. Fusion of Halo enzyme to a telomere protein anchors dimerizers to telomeres through covalent Halo ligand-enzyme binding. Binding of TMP to eDHFR recruits eDHFR-fused phase separating proteins to telomeres and induces condensate formation. Because TMP-eDHFR interaction is non-covalent, condensation can be reversed by using excess free TMP to compete with the dimerizer for eDHFR binding. An example of inducing promyelocytic leukemia (PML) nuclear body formation on telomeres and determining condensate growth, dissolution, localization and composition is shown. This method can be easily adapted to induce condensates at other genomic locations by fusing Halo to a protein that directly binds to the local chromatin or to dCas9 that is targeted to the genomic locus with a guide RNA. By offering the temporal resolution required for single cell live imaging while maintaining phase separation in a population of cells for biochemical assays, this method is suitable for probing both the formation and function of chromatin-associated condensates.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Multimerización de Proteína , Telómero/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Trimetoprim/metabolismo , Proteínas de Escherichia coli/química , Humanos , Ligandos , Unión Proteica , Tetrahidrofolato Deshidrogenasa/química , Trimetoprim/química
10.
Front Mol Biosci ; 8: 785160, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35174207

RESUMEN

TERRA, TElomeric Repeat-containing RNA, is a long non-coding RNA transcribed from telomeres. Emerging evidence indicates that TERRA regulates telomere maintenance and chromosome end protection in normal and cancerous cells. However, the mechanism of how TERRA contributes to telomere functions is still unclear, partially owing to the shortage of approaches to track and manipulate endogenous TERRA molecules in live cells. Here, we developed a method to visualize TERRA in live cells via a combination of CRISPR Cas13 RNA labeling and SunTag technology. Single-particle tracking reveals that TERRA foci undergo anomalous diffusion in a manner that depends on the timescale and telomeric localization. Furthermore, we used a chemically-induced protein dimerization system to manipulate TERRA subcellular localization in live cells. Overall, our approaches to monitor and control TERRA locations in live cells provide powerful tools to better understand its roles in telomere maintenance and genomic integrity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA