Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36146076

RESUMEN

As a new method to detect vital signs, Ultra-wideband (UWB) radar could continuously monitor human respiratory signs without contact. Aimed at addressing the problem of large interference and weak acquisition signal in radar echo signals from complex scenes, this paper adopts a UWB radar echo signal processing method that combines strong physical sign information extraction at P time and Variational Mode Decomposition (VMD) to carry out theoretical derivation. Using this novel processing scheme, respiration and heartbeat signals can be quickly reconstructed according to the selection of the appropriate intrinsic mode functions (IMFs), and the real-time detection accuracy of human respiratory signs is greatly improved. Based on an experimental platform, the data collected by the UWB radar module were first verified against the measured values obtained at the actual scene. The results of a validation test proved that our UWB radar echo signal processing method effectively eliminated the respiratory clutter signal and realized the accurate measurement of respiratory and heartbeat signals, which would prove the existence of life and further improve the quality of respiration and heartbeat signal and the robustness of detection.


Asunto(s)
Radar , Procesamiento de Señales Asistido por Computador , Algoritmos , Frecuencia Cardíaca , Humanos , Monitoreo Fisiológico/métodos , Frecuencia Respiratoria , Signos Vitales
2.
Sensors (Basel) ; 22(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35161922

RESUMEN

The identification of weak vital signs has always been one of the difficulties in the field of life detection. In this paper, a novel vital sign detection and extraction method with high efficiency, high precision, high sensitivity and high signal-to-noise ratio is proposed. Based on the NVA6100 pulse radar system, the radar matrix which contains several radar pulse detection signals is received. According to the characteristics of vital signs and radar matrices, the Singular Value Decomposition (SVD) is adopted to perform signal denoising and decomposition after preprocessing, and the temporal and spatial eigenvectors of each principal component are obtained. Through the energy proportion screening, the Wavelet Transform decomposition and linear trend suppression, relatively pure vital signs in each principal component, are obtained. The human location is detected by the Energy Entropy of spatial eigenvectors, and the respiratory signal and heartbeat signal are restored through a Butterworth Filter and an MTI harmonic canceller. Finally, through an analysis of the performance of the algorithm, it is proved to have the properties of efficiency and accuracy.


Asunto(s)
Radar , Procesamiento de Señales Asistido por Computador , Algoritmos , Frecuencia Cardíaca , Humanos , Frecuencia Respiratoria , Signos Vitales , Análisis de Ondículas
3.
ACS Omega ; 6(12): 8418-8429, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817502

RESUMEN

Accurately determining the spontaneous combustion zone of coal around the borehole plays an important role in preventing borehole accidents. To solve the problem of dividing the hazardous zone of spontaneous combustion in boreholes, a fully coupled model of the gas flow, coal oxidation reaction, and energy transportation is developed in this study. Taking the drainage borehole of the 24130 working face in the No. 10 Coal Mine of the Pingdingshan mining area as an example, the proposed model is used to simulate the seepage velocity field, oxygen concentration field, and temperature field of the coal around the borehole. The simulation results are found to be consistent with the field test results. Based on the simulation results, the coal around the borehole is divided into two areas in the axial direction of the borehole. The intersection of the seepage velocity u ≤ 0.004 m/s and oxygen concentration 7% ≤ C(O2) ≤ 21% are considered the "hazardous zone", and the union of the oxygen concentration C(O2) < 7% and seepage velocity u > 0.004 m/s are considered the "safety zone". The influences of various factors inducing spontaneous combustion of coal around the borehole on the hazardous zone are revealed by analyzing the drainage negative pressure, sealing length, and roadway temperature. The results show that reducing the drainage negative pressure and increasing the sealing length can effectively restrain the spontaneous combustion of the borehole and can also help reduce the scope of the hazardous zone of the borehole. Finally, a reasonable arrangement of the predrainage period in the appropriate season can also effectively inhibit the spontaneous combustion of coal around boreholes.

4.
PLoS One ; 15(11): e0242719, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33227010

RESUMEN

The internal collapse of deep seam drainage borehole and negative pressure loss represents a serious technical problem affecting gas drainage. To address this problem a creep model of coal around borehole was established based on the plastic softening characteristics of coal. The final collapse time of the borehole was determined and used to derive the three stages of the borehole collapse process. The model of negative pressure loss in drainage borehole was established according to the theory of fluid dynamics, the model of methane gas flow and the creep model of the coal around the borehole. The relationship between the negative pressure loss of drainage and the change of borehole aperture was derived, thereby revealing the main influencing factors of the negative pressure loss in the borehole. A drainage technique named "Full-hole deep screen mesh pipe" was introduced and tested to prevent the collapse of borehole and reduce the negative pressure loss. The result shows that after the borehole was drilled, the borehole wall was affected by the complex stress of the deep coal seam, the coal surrounding the borehole collapsed or presented the characteristics of creep extrusion towards the borehole. The "Full-hole deep screen mesh pipe drainage technology" could effectively control the collapse as well as the deformation of the borehole and reduced the negative pressure loss. Compared with the traditional drainage technology, the methane gas drainage concentration was increased by 101% and the gas flow was increased by 97% when the methane gas was drained for 90 days, the gas drainage efficiency increased significantly.


Asunto(s)
Minas de Carbón , Carbón Mineral , Metano , Modelos Teóricos , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...