Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 941: 173678, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848919

RESUMEN

The incomplete degradation of antibiotics in water can produce intermediates that carry environmental risks and thus warrant concerns. In this study, the degradation of high concentrations of antibiotic sulfadiazine (SDZ) by advanced oxidation processes that leverage different reactive oxide species was systematically evaluated in terms of the influence of different degradation intermediates on the propagation of antibiotic resistance genes (ARGs). The ozone, persulfate, and photocatalytic oxidation systems for SDZ degradation are dominated by ozone, direct electron transfer, and singlet oxygen, hole, and superoxide radicals, respectively. These processes produce 15 intermediates via six degradation pathways. Notably, it was determined that three specific intermediates produced by the ozone and persulfate systems were more toxic than SDZ. In contrast, the photocatalytic system did not produce any intermediates with toxicity exceeding that of SDZ. Microcosm experiments combined with metagenomics confirmed significant changes in microbiota community structure after treatment with SDZ and its intermediates, including significant changes in the abundance of Flavobacterium, Dungenella, Archangium, and Comamonas. This treatment also led to the emergence of sulfonamide ARGs. The total abundance of sulfonamide ARGs was found to be positively correlated with residual SDZ concentration, with the lowest total abundance observed in the photocatalytic system. Additionally, the correlation analysis unveiled microbiota carrying sulfonamide ARGs.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana , Oxidación-Reducción , Sulfadiazina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Farmacorresistencia Microbiana/genética , Antibacterianos/toxicidad , Biodegradación Ambiental
2.
Phys Chem Chem Phys ; 26(19): 14194-14204, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38713135

RESUMEN

Constructing Z-scheme heterojunctions incorporating an exquisite hollow structure is an effective performance regulation strategy for the realization of high quantum efficiency and a strong redox ability over photocatalysts. Herein, we report the delicate design and preparation of a core-shell hollow CdS@CoTiO3 Z-scheme heterojunction with a CdS nanoparticle (NP)-constructed outer shell supported on a CoTiO3 nanorod (NR) inner shell. The in situ growth synthetic method led to a tightly connected interface for the heterojunction between CdS and CoTiO3, which shortened the transport distance of photoinduced charges from the interface to the surface. The promoted charge carrier separation efficiency and the retained strong redox capacity caused by the Z-scheme photoinduced charge-transfer mechanism were mainly responsible for the boosted photocatalytic performance. Additionally, the well-designed core-shell structure afforded a larger interfacial area by the multiple direction contact between CdS and CoTiO3, ensuring sufficient channels for efficient charge transfer, and thus further boosting the photocatalytic activity. As an efficient photocatalyst, the optimized CdS@CoTiO3 nanohybrids displayed excellent 2,4-dichlorophenol (2,4-DCP) and tetracycline (TC) degradation efficiencies of 91.3% and 91.8%, respectively. This study presents a Z-scheme heterojunction based on ecofriendly CoTiO3, which could be valuable for the development of metal perovskite photocatalysts for application in environmental remediation, and also demonstrated the tremendous potential of integrating a Z-scheme heterojunction with the morphology design of photocatalyts.

3.
Bioresour Technol ; 402: 130806, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718906

RESUMEN

The study investigated the inactivation of Microcystis aeruginosa using a combined approach involving thermally activated peroxyacetic acid (Heat/PAA) and thermally activated persulfate (Heat/PDS). The Heat/PDS algal inactivation process conforms to first-order reaction kinetics. Both hydroxyl radical (•OH) and sulfate radical (SO4-•) significantly impact the disruption of cell integrity, with SO4-• assuming a predominant role. PAA appears to activate organic radicals (RO•), hydroxyl (•OH), and a minimal amount of singlet oxygen (1O2). A thorough analysis underscores persulfate's superior ability to disrupt algal cell membranes. Additionally, SO4-• can convert small-molecule proteins into aromatic hydrocarbons, accelerating cell lysis. PAA can accelerate cell death by diffusing into the cell membrane and triggering advanced oxidative reactions within the cell. This study validates the effectiveness of the thermally activated persulfate process and the thermally activated peroxyacetic acid as strategies for algae inactivation.


Asunto(s)
Microcystis , Oxidación-Reducción , Especies Reactivas de Oxígeno , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacología , Sulfatos/química , Ácido Peracético/farmacología , Calor , Radical Hidroxilo/metabolismo , Cinética
4.
Sci Total Environ ; 926: 171885, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527540

RESUMEN

Organic contaminants, notorious for their complexity and resistance to degradation, are prevalent in aquatic environments, posing severe threats to ecosystems. Sulfate radical-based advanced oxidation processes (SR-AOPs), known for their stability and high effectiveness, have become a common choice for treating organic wastewater. Metal-organic framework materials (MOFs) have garnered substantial attention due to their facile chemical manipulation, unique structural configurations, and other favorable properties. Therefore, this article critically reviews recent advances in research involving the utilization of Fe-based MOFs (Fe-MOFs) and their derivatives in SR-AOPs. Specifically, it highlights the manipulation of influencing factors within the system to enhance the degradation of organic pollutants. The mechanisms and applications underlying the degradation of organic pollutants in the SR-AOPs system are also elucidated.

5.
Bioresour Technol ; 397: 130452, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354963

RESUMEN

This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BN3Z0.5BC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BN3Z0.5BC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.


Asunto(s)
Carbón Orgánico , Ácido Peracético , Contaminantes Químicos del Agua , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Radicales Libres , Antibacterianos
6.
Environ Pollut ; 344: 123223, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38158009

RESUMEN

Electrospun nanofiber membranes have emerged as a novel catalyst, demonstrating exceptional efficacy in advanced oxidation processes (AOPs) for the degradation of organic pollutants. Their superior performance can be attributed to their substantial specific surface area, high porosity, ease of modification, rapid recovery, and unparalleled chemical stability. This paper aims to comprehensively explore the progressive applications and underlying mechanisms of electrospun nanofibers in AOPs, which include Fenton-like processes, photocatalysis, catalytic ozonation, and persulfate oxidation. A detailed discussion on the mechanism and efficiency of the catalytic process, which is influenced by the primary components of the electrospun catalyst, is presented. Additionally, the paper examines how concentration, viscosity, and molecular weight affect the characteristics of the spinning materials and seeks to provide a thorough understanding of electrospinning technology to enhance water treatment methods. The review proposes that electrospun nanofiber membranes hold significant potential for enhancing water treatment processes using advanced oxidation methods. This is attributed to their advantageous properties and the tunable nature of the electrospinning process, paving the way for advancements in water treatment through AOPs.


Asunto(s)
Nanofibras , Contaminantes Químicos del Agua , Purificación del Agua , Nanofibras/química , Oxidación-Reducción , Purificación del Agua/métodos , Contaminantes Químicos del Agua/química
7.
Chemosphere ; 344: 140347, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793552

RESUMEN

Photocatalytic degradation of pollutants is considered a promising approach for wastewater treatment, but is hampered by low efficiency and limited understanding of degradation pathways. A novel oxygen-doped porous g-C3N4/oxygen vacancies-rich BiOCl (OCN/OVBOC) heterostructure was prepared for photocatalytic degradation of bisphenol A (BPA). The synergistic defect and doping engineering favor the formation of strong bonded interface for S-scheme mechanism. Among them, 0.3 OCN/OVBOC showed the most excellent degradation rate, which was 8 times and 4 times higher than that of pure g-C3N4 and BiOCl, respectively. This excellent performance is mainly attributed to the significantly enhanced charge separation via strong bonded interface and redox capability of the S-scheme heterojunction structure, by tuning the coordination excitation and electron localization of the catalyst via O doping and vacancies. This work provides important insights into the role of synergistic defect and doping engineering in facilitating the formation of strong bonded S-scheme heterojunction and ultimately sheds new light on the design of efficient photocatalysts.


Asunto(s)
Electrones , Contaminantes Ambientales , Oxígeno , Porosidad
8.
Bioresour Technol ; 387: 129536, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37544549

RESUMEN

Corn straw and sludge-derived biochar composite (BC) loaded with CoFe2O4 was successfully prepared to activate peracetic acid (PAA) for efficient degradation of tetracycline hydrochloride (TCH). Within 60 s, 96 % TCH removal efficiency was achieved through a non-free radical degradation pathway, primarily driven by singlet oxygen (1O2). The mechanism involves the electron-rich groups on the biochar surface, which facilitate the cleavage of the PAA OO bond to generate •O2-/1O2 and provide electrons to induce the formation of high-valent Fe(IV) and Co(IV). The oxygen vacancies on the surface of the CoFe2O4-loaded biochar composite (CFB-2) contribute partially to 1O2 production through their transformation into a metastable intermediate with dissolved oxygen. Moreover, elevated temperatures further enhance PAA activation by CFB-2, leading to increased reactive oxygen species (ROS) production through PAA decomposition, thereby promoting TCH removal. This study offers new insights into the catalysis of metal-loaded biochar for efficient TCH degradation via non-free radical generation.


Asunto(s)
Oxígeno , Ácido Peracético , Especies Reactivas de Oxígeno , Tetraciclina , Antibacterianos , Carbón Orgánico
9.
J Hazard Mater ; 457: 131759, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37276692

RESUMEN

Polyethylene terephthalate (PET) is a mass-produced fossil-based plastic polymer that contributes to catastrophic levels of plastic pollution. Here we demonstrated that Tenebrio molitor (mealworms) was capable of rapidly biodegrading two commercial PET resins (microplastics) with respective weight-average molecular weight (Mw) of 39.33 and 29.43 kDa and crystallinity of 22.8 ± 3.06% and 18 ± 2.25%, resulting in an average mass reduction of 71.03% and 73.28% after passage of their digestive tract, and respective decrease by 9.22% and 11.36% in Mw of residual PET polymer in egested frass. Sequencing of 16 S rRNA gene amplicons of gut microbial communities showed that dominant bacterial genera were enriched and associated with PET degradation. Also, PICRUSt prediction exhibited that oxidases (monooxygenases and dioxygenases), hydrolases (cutinase, carboxylesterase and chitinase), and PET metabolic enzymes, and chemotaxis related functions were up-regulated in the PET-fed larvae. Additionally, metabolite analyses revealed that PET uptake caused alterations of stress response and plastic degradation related pathways, and lipid metabolism pathways in the T. molitor larvae could be reprogrammed when the larvae fed on PET. This study provides new insights into gut microbial community adaptation to PET diet under nutritional stress (especially nitrogen deficiency) and its contribution to PET degradation.


Asunto(s)
Microbioma Gastrointestinal , Tenebrio , Animales , Larva/metabolismo , Tenebrio/metabolismo , Tenebrio/microbiología , Plásticos/metabolismo , Polímeros , Tereftalatos Polietilenos/metabolismo , Poliestirenos/metabolismo
10.
Chemosphere ; 331: 138776, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37100247

RESUMEN

Plastics have become an essential part of life. When it enters the environment, it migrates and breaks down to form smaller size fragments, which are called microplastics (MPs). Compared with plastics, MPs are detrimental to the environment and pose a severe threat to human health. Bioremediation is being recognized as the most environmentally friendly and cost-effective degradation technology for MPs, but knowledge about the biodegradation of MPs is limited. This review explores the various sources of MPs and their migration behavior in terrestrial and aquatic environments. Among the existing MPs removal technologies, biodegradation is considered to be the best removal strategy to alleviate MPs pollution. The biodegradation potential of MPs by bacteria, fungi and algae is discussed. Biodegradation mechanisms such as colonization, fragmentation, assimilation, and mineralization are presented. The effects of MPs characteristics, microbial activity, environmental factors and chemical reagents on biodegradation are analyzed. The susceptibility of microorganisms to MPs toxicity might lead to decreased degradation efficiency, which is also elaborated. The prospects and challenges of biodegradation technologies are discussed. Eliminating prospective bottlenecks is necessary to achieve large-scale bioremediation of MPs-polluted environment. This review provides a comprehensive summary of the biodegradability of MPs, which is crucial for the prudent management of plastic waste.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Biodegradación Ambiental , Estudios de Factibilidad , Estudios Prospectivos , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA