Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(22): 15868-15876, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38787703

RESUMEN

Lifshitz transition was proposed to explain a change of the topology structure in a Fermi surface induced by continuous lattice deformation without symmetry breaking since 1960. It is well known that the anomalies of the kinetic coefficients (the coefficient of heat conduction and electrical conductivity, viscosity, sound absorption, etc.) are usually closely connected with the Lifshitz transition behavior. 2H-TaS2 is a typical representative to study its anomalies of temperature dependence of heat capacity, resistivity, Hall effect, and magnetic susceptibility. Its geometrical structure of the charge density wave (CDW) phase and layer number dependence of carrier-sign alternation upon cooling in the Hall measurements have not been well understood. The geometrical structure (T-Ts) of the CDW phase was predicted through first principles calculations for bulk and mono-layer 2H-TaS2. Driven by electron-lattice coupling, Ta atoms contract to form a partially gapped CDW phase. The CDW phase has a larger average interlayer separation of S-S atoms in the adjacent two layers compared with the metal phase, which results in a weaker chemical bonding among S-S atoms in the adjacent two layers and then a narrower bandwidth of the energy band. The narrower bandwidth of the energy band leads to a larger density of states (DOS) in the out-of-plane direction above the Fermi level for the CDW phase. As the Fermi level continually drops from the DOS region with a negative slope to that with a positive slope on cooling, the reversal of the p → n type carrier and the pocket-vanishing-type Lifshitz transition occur in the bulk 2H-TaS2. However, the Fermi level slightly drops by 6 meV and happens to be at the positions of pseudo band gaps, so the reduction of in-plane DOS and total DOS is responsible for the always p-type carrier in the mono-layer samples. Our CDW vector of the k-space separation between two saddle points is QSP ≈ 0.62 GK and can provide a theoretical support for the "saddle-point" CDW mechanism proposed by Rice and Scott. Our theoretical explanation gives a new understanding of both Lifshitz transition for symmetry breaking and reversal for the p-n carrier sign in the Hall measurements in various two-dimensional transition metal disulfides.

2.
J Chem Phys ; 160(17)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38748023

RESUMEN

The ability to distinguish between stochastic systems based on their trajectories is crucial in thermodynamics, chemistry, and biophysics. The Kullback-Leibler (KL) divergence, DKLAB(0,τ), quantifies the distinguishability between the two ensembles of length-τ trajectories from Markov processes A and B. However, evaluating DKLAB(0,τ) from histograms of trajectories faces sufficient sampling difficulties, and no theory explicitly reveals what dynamical features contribute to the distinguishability. This work provides a general formula that decomposes DKLAB(0,τ) in space and time for any Markov processes, arbitrarily far from equilibrium or steady state. It circumvents the sampling difficulty of evaluating DKLAB(0,τ). Furthermore, it explicitly connects trajectory KL divergence with individual transition events and their waiting time statistics. The results provide insights into understanding distinguishability between Markov processes, leading to new theoretical frameworks for designing biological sensors and optimizing signal transduction.

3.
Phys Chem Chem Phys ; 26(3): 2376-2386, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38167696

RESUMEN

In most two-dimensional transition metal chalcogenides, the superconducting phase coexists with the charge density wave (CDW) phase. There exists at least one case, i.e. bulk 2H-NbS2, that does not conform to this picture. Scientists have shown great interest in trying to experimentally find the CDW phase of bulk NbS2 since 1975. Is there any theoretically more stable thermodynamic state than its higher-temperature metal phase, especially in the case of charge injection? Theoretically more stable CDW bulk configurations (TC for 2H-NbS2 and TTs for 2H-NbSe2) with partial pseudo energy gaps were predicted through the harmonic phonon softening theory and first-principles calculations. The ratios of larger to smaller pseudo gaps around K-H segment in the Brillouin zone for CDW phases are basically equal to those of superconductivity phases for bulk 2H-NbX2 (X = S and Se). The CDW phase should coexist with its superconductor state below the critical temperature rather than the metal phase for bulk 2H-NbS2. The presence of CDW phase should be more easily observed experimentally when the injected charge reaches 0.5e/Nb18S36 for bulk 2H-NbS2. Our calculations of density of state (DOS) indicated that, during Nb atoms contracting to form the CDW phases with symmetry breaking in the in-plane direction, dominant conductive carriers are always of p-type for bulk 2H-NbS2 while the alternation of carrier type from p-type to n-type occurs for bulk 2H-NbSe2. The Fermi level continuously drops and then the M-L segment of the out-of-plane energy band emerges from the Fermi surface, which corresponds to the reversal of p-n type sign. Lifshitz transition of pocket-vanishing types occurs in the out-of-plane direction without symmetry breaking during the geometrical structural phase transition for bulk 2H-NbSe2. Our calculations have theoretically addressed the long-standing coexistence issue of CDW and superconducting phases.

4.
Phys Chem Chem Phys ; 25(45): 31098-31106, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37947158

RESUMEN

Phase stability and the phase transition of Janus transition metal chalcogenides (TMDs) have become interesting issues that have not been fully resolved since their successful synthesis. By fitting the results from first principles calculations, a tight-binding dynamics matrix of the 1T' phase is constructed and the eigenvectors are also obtained. We propose a method to project the atomic motion causing the phase transition from 2H to 1T' onto these eigenvectors, and identify four key phonon modes which are the major factors to trigger phase transition. Temperature excitation is used to excite the key modes and the free energy criterion is used to determine the phase stability. The relatively large enthalpy difference between the 2H and 1T' phases favours the 2H one as the stable phase at low temperature. While the 1T' phase has a quick increase in vibrational free energy with rising temperature, especially for 1T' Janus TMDs which have a quicker increase in the total free energy than that of 1T' non-Janus TMDs, making them show a lower phase transition temperature. Our work will deepen our understanding of the phase transition behavior of 2D Janus TMDs, and the tight-binding dynamics matrix and the method to obtain the key modes will be a useful tool for further study of the phase transitions of 2D Janus TMDs and other related materials.

5.
Adv Sci (Weinh) ; 10(12): e2206166, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36861951

RESUMEN

Understanding the dynamical evolution from metal ions to single atoms is of great importance to the rational development of synthesis strategies for single atom catalysts (SACs) against metal sintering during pyrolysis. Herein, an in situ observation is disclosed that the formation of SACs is ascertained as a two-step process. There is initially metal sintering into nanoparticles (NPs) (500-600 °C), followed by the conversion of NPs into metal single atoms (Fe, Co, Ni, Cu SAs) at higher temperature (700-800 °C). Theoretical calculations together with control experiments based on Cu unveil that the ion-to-NP conversion can arise from the carbon reduction, and NP-to-SA conversion being steered by generating more thermodynamically stable Cu-N4 configuration instead of Cu NPs. Based on the evidenced mechanism, a two-step pyrolysis strategy to access Cu SACs is developed, which exhibits excellent ORR performance.

6.
Sci Rep ; 13(1): 3197, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823254

RESUMEN

The identification of important nodes is a hot topic in complex networks. Many methods have been proposed in different fields for solving this problem. Most previous work emphasized the role of a single feature and, as a result, rarely made full use of multiple items. This paper proposes a new method that utilizes multiple characteristics of nodes for the evaluation of their importance. First, an extended degree is defined to improve the classical degree. And E-shell hierarchy decomposition is put forward for determining nodes' position through the network's hierarchical structure. Then, based on the combination of these two components, a hybrid characteristic centrality and its extended version are proposed for evaluating the importance of nodes. Extensive experiments are conducted in six real networks, and the susceptible-infected-recovered model and monotonicity criterion are introduced to test the performance of the new approach. The comparison results demonstrate that the proposed new approach exposes more competitive advantages in both accuracy and resolution compared to the other five approaches.

7.
J Phys Chem Lett ; 14(1): 66-72, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36566388

RESUMEN

Mandal and Jarzynski have proposed a fully autonomous information heat engine, consisting of a demon, a mass, and a memory register interacting with a thermal reservoir. This device converts thermal energy into mechanical work by writing information to a memory register or, conversely, erasing information by consuming mechanical work. Here, we derive a speed limit inequality between the relaxation time of state transformation and the distance between the initial and final distributions, where the combination of the dynamical activity and entropy production plays an important role. Such inequality provides a hint that a speed-performance trade-off relation exists between the relaxation time to a functional state and the average production. To obtain fast functionalization while maintaining the performance, we show that the relaxation dynamics of the information heat engine can be accelerated significantly by devising an optimal initial state of the demon. Our design principle is inspired by the so-called Mpemba effect, where water freezes faster when initially heated.

8.
Phys Chem Chem Phys ; 25(1): 759-767, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36508170

RESUMEN

The structural phase transition (SPT) and metal-insulator phase transition (MIT) always occur simultaneously upon heating from the low-temperature insulator M1 phase to the high-temperature metal R phase in vanadium dioxide, and it is still unclear which one of Mott correlation and Peierls distortion plays a decisive role in the thermally induced phase transition (PT) since 1959. Our density functional theory (DFT)-based calculations revealed that the intermediate phase in the PT, the so-called monoclinic metal phase, is a zero indirect band gap semimetal (P21/c space group) with a pseudo gap (199 meV). From the M1 phase to the monoclinic metal phase, the band gap decreases gradually to zero, and the bonding lengths between vanadium-vanadium atoms remain nearly constant. The SPT and MIT from the intermediate structure to the R phase occur simultaneously with a sudden change of bonding lengths between vanadium-vanadium atoms, in which electrons can jump down rather than jump up to the conduction band minimum (CBM) from the valence band maximum (VBM) under thermal fluctuation in order to lower the total energy of the system to push forward the occurrence of PT. The electron jumping does not require additional energy from Coulomb repulsion between electrons even though it is always present. This SPT is a typical Peierls PT or a pseudo Mott PT rather than an actual Mott PT in the each of the two stages. Our conclusions provide a new understanding of SPT and MIT in vanadium dioxide that has been debated for more than 80 years.

9.
Entropy (Basel) ; 24(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36554231

RESUMEN

This paper proposed an image algorithm based on a cascaded chaotic system to improve the performance of the encryption algorithm. Firstly, this paper proposed an improved cascaded two-dimensional map 2D-Cosine-Logistic-Sine map (2D-CLSM). Cascade chaotic system offers good advantages in terms of key space, complexity and sensitivity to initial conditions. By using the control parameters and initial values associated with the plaintext, the system generates two chaotic sequences associated with the plaintext image. Then, an S-box construction method is proposed, and an encryption method is designed based on the S-box. Encryption is divided into bit-level encryption and pixel-level encryption, and a diffusion method was devised to improve security and efficiency in bit-level encryption. Performance analysis shows that the encryption algorithm has good security and is easily resistant to various attacks.

10.
Sci Rep ; 12(1): 15407, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104391

RESUMEN

This paper proposes a new control scheme using two scaling matrices that realizes the finite-time synchronization of different-dimensional chaotic systems with parameter uncertainties and external disturbances. Firstly, based on Lyapunov stability theorem and finite-time stability theorem, the definition of finite-time synchronization of chaotic systems with different dimensions is introduced. Secondly, in the case of external disturbance and parameter uncertainty, an adaptive feedback hybrid controller and parameter adaptive laws are designed to synchronize different dimensional uncertain chaotic systems in finite-time. Then, according to the characteristics of the unknown parameters of the system, a transformation matrix is constructed to meet the needs of chaotic systems with different dimensions, and a simplified synchronization control scheme is designed. Finally, two numerical experiments are carried out to verify the effectiveness of the proposed methods.

11.
ACS Appl Mater Interfaces ; 14(8): 10337-10343, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179878

RESUMEN

Exploring highly active and cost-effective catalysts for styrene epoxidation is of great significance, but it remains challenging to simultaneously achieve excellent conversion and selectivity toward styrene oxide. In this work, the structures and performance of Co, Fe, and Cu single-atom catalysts (SACs) in styrene epoxidation with tert-butyl hydroperoxide (TBHP) are predicted using density functional theory (DFT) calculations. The results reveal that the Co-N structure prefers that of styrene oxide over Fe-N and Cu-N structures. This predicted result is verified via catalytic evaluations, where the Co SACs displayed significantly higher styrene oxide selectivity than Fe and Cu SACs. Moreover, the activity of Co SAC can be further improved by the construction of unsaturated vacancy-defect cobalt single sites. As a result, excellent performance with styrene conversion of 99.9% and styrene oxide selectivity of 71% is achieved after a reaction time of 8 h on the optimal Co SAC.

12.
J Colloid Interface Sci ; 554: 229-238, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31301523

RESUMEN

An ideal photocatalyst not only offers high photo-generated electron-hole pairs separation ability, but also has suitable redox potential. Here, a direct Z-scheme core-shell structured WO3@SnS2 hetero-junction photo-catalyst was prepared via two-step hydrothermal method, in which the core-shell structure, rod morphology and micro-composition of hetero-junction were confirmed through X-ray diffraction (XRD) patterns, Fourier transform infrared (FTIR) spectra, field emission scanning electron microscope (FE-SEM), transmission electron microscope (FEI-TEM) and X-ray photoelectron spectra (XPS). Their enhanced photo-catalytic abilities were evaluated by photo-degradation of Rhodamine (RhB), photo-reduction of dichromate (Cr6+) solution and photo-catalytic H2 production through comparing with pure WO3, SnS2 or the mixture of WO3 and SnS2 (WO3/SnS2). The absorption spectra and electrochemical properties were used to estimate the band gap of samples, the expanded spectral absorption capacity and improved electron-hole separation ability, which are important factors for enhanced photocatalytic performance. Furthermore, the direct Z-scheme charge transfer mechanism of WO3@SnS2 hetero-junction was determined through the combination of theoretical calculation and experimental characterizations, which played a decisive role for retaining excellent redox potential and increasing photo-catalytic ability of WO3 and SnS2.

13.
Phys Chem Chem Phys ; 21(6): 3318-3326, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30688328

RESUMEN

Searching for two-dimensional (2D) ferromagnetic materials is one of the key steps in 2D spintronics. 2D metal carbide/nitride materials (MXene) are widely regarded as promising candidates for this kind of material. However, when the surfaces are saturated with some functional groups during the preparation, the ground states of most of the MXenes transit from ferromagnetic (FM) to antiferromagnetic (AFM) or non-magnetic (NM) states. In this article, we propose a new method to avoid this problem by adopting asymmetric decoration of the MXene surface, which can make MXenes ferromagnetic ground states. Based on hybrid density functional theory calculations, our results show asymmetrical adsorption of negative ions or metal atoms makes the Ti atoms have different valence states, such as one sublayer Ti4+ and another Ti+, which prefer FM ground states. This research will deepen our understanding of the magnetic properties of 2D materials and contribute to the design of new 2D ferromagnetic materials.

14.
ACS Appl Mater Interfaces ; 9(28): 23995-24004, 2017 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-28605911

RESUMEN

Searching for a non-rare-earth-based oxide red-emitting phosphor is crucial for phosphor-converted light-emitting diodes (LEDs). In this study, we optimized a blue and UV-light excited Sr4Al14O25:Mn phosphor exhibiting red emission peaked at ∼653 nm, which was successfully synthesized by solid-state reaction. The crystal structure, micromorphology, and luminescent properties of Sr4Al14O25:Mn phosphors were characterized by X-ray Rietveld refinement, high-resolution transmission electron microscopy, and photoluminescence spectra. The band gap and electronic structure of Sr4Al14O25 were analyzed by density functional theory calculations using the hybrid exchange-correlation functional. The crystal field environment effect of Al sites from introducing activator Mn ions was investigated with the aid of Raman 27Al nuclear magnetic resonance spectra and electron spin resonance. The pressure dependent luminescent properties and decay time of this compound were presented. The tricolor display spectrum by combining blue InGaN chips, commercial ß-SiAlON:Eu2+ green phosphor, and Sr4Al14O25:Mn red phosphor were evaluated for commercial applications: using the present Sr4Al14O25:Mn red phosphor converted LED as a backlighting source.

15.
ACS Appl Mater Interfaces ; 9(7): 6177-6185, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28116896

RESUMEN

Mn4+-activated oxide phosphors La(MgTi)1/2O3 (LMT) with far-red emitting were prepared via a sol-gel route. The structures of samples were determined by X-ray diffraction (XRD) and Reitveld refinement. The occupied sites of Mn4+ (d3 electronic configuration) in host La(MgTi)1/2O3 were confirmed by ab initio calculations in which the system has the lower formation energy, stable lattice structure, and strong bonding state as Mn4+ enters into Ti site. The luminescent properties of Mn4+-doped samples were investigated; the samples emit far-red light centered at 708 nm with ultraviolet light (345 nm) or blue light (487 nm) excitation. According to the photoluminescence (PL) and excitation (PLE) spectra, the crystal field strength of the Mn4+-occupied environment was estimated. The thermal stability of phosphor was also evaluated through temperature-dependent PL intensity in a heating and cooling cycle process. The emission band is well-matched with the absorption band of phytochrome PFR under the excitation of light in near-ultraviolet to blue, which suggests that the LMT: Mn4+ phosphor has great potential applications in light-emitting diodes (LEDs) for modulating plant growth.

16.
ACS Appl Mater Interfaces ; 8(44): 30312-30319, 2016 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-27758106

RESUMEN

Investigation of the unclear influential factors to thermal sensing capability is the only way to achieve highly sensitive thermometry, which is greatly needed to meet the growing demand for potential sensing applications. Here, the effect from the phonon energy of a matrix on the sensitivity of upconversion (UC) microthermometers is elaborately discussed using a controllable method. Uniform truncated octahedral YF3:Er3+/Yb3+ microcrystals were prepared by a hydrothermal approach, and phase transformation from YF3 to YOF and Y2O3 with nearly unchanged morphology and size was successfully realized by controlling the annealing temperature. The phonon energies of blank matrixes were determined by FT-IR spectra and Raman scattering. Upon 980 nm excitation, phonon energy-dependent UC emitting color was finely tuned from green to yellow for three samples, and the mechanisms were proposed. Thermal sensing behaviors based on the TCLs (2H11/2/4S3/2) were evaluated, and the sensitivities gradually grew with the increase in the matrix's phonon energy. According to chemical bond theory and first-principle calculations, the most intrinsic factors associated with thermometric ability were qualitatively demonstrated through analyzing the inner relation between the phonon energy and bond covalency. The exciting results provide guiding insights into employing appropriate host materials with desired thermometric ability while offering the possibility of highly accurate measurement of temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...