Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Funct ; 13(19): 9856-9867, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36047913

RESUMEN

Neuroinflammation and intestinal microbiota cause pathological progression of Alzheimer's disease (AD), leading to neurodegeneration and cognitive decline. This study investigates the effects of wheat embryo globulin nutrient (WEGN) on depression, neuroinflammation, and intestinal microbial disorder caused by AD and its protective mechanism on cognitive impairment. Results demonstrated that rats in the WEGN group have lower feed intake but higher body weight than those in the control group. Notably, rats in the WEGN group have a higher number of cross grids and uprights and a smaller amount of fecal particles than those in the control group. Biochemical examinations revealed that rats in the WEGN group had lower expression of interleukin-1ß, interleukin-6, and tumor necrosis factor α in hippocampus tissue and the expression of genes and proteins related to the TLR4/MyD88/NF-κB signaling pathway in AD rats was down-regulated compared to those in the control group. The 16S rRNA gene sequencing results demonstrated that WEGN treatment inhibits the increase of Erysipelotrichaceae, Erysipelatoclostridium, Erysipelotrichaceae, Corynebacterium, and Frisingicoccus, and the reduction of Lactobacillus in AD rats. WEGN has potential value as a practical food in alleviating neuroinflammation-related diseases such as AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Globulinas , Animales , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Nutrientes , ARN Ribosómico 16S , Ratas , Ratas Sprague-Dawley , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Triticum/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Food Sci ; 87(6): 2549-2562, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35607810

RESUMEN

Wheat embryo albumin (WEA) extracted from wheat embryo possesses multiple effects including antioxidant, anti-inflammatory, and immunoregulatory effects. In this study, a single factor experiment was conducted to determine the optimal enzymolysis conditions of WEA. Five components (F1-F5) were obtained via ultrafiltration, among which F3 (molecular weight 3-5 kDa) displayed the best antioxidant activity. WEA and F3 were characterized by transmission electron microscopy, scanning electron microscopy, circular dichroism spectrum analysis, and amino acid composition tests. Results revealed that F3 significantly increased the contents of ß-tablets, aromatic amino acids, and hydrophobic amino acids compared to WEA. LC-MS/MS analysis demonstrated that F3 had more tyrosine and histidine moieties than WEA. Moreover, analysis of the Maillard reaction products (MRPs) showed that F3-MRPs had strong browning strength, ultraviolet absorption, higher number of free amino acids, and umami amino acid ratio compared with WEA. In conclusion, enzymolysis can improve the functional properties of WEA, which broadens the application spectrum of WEA in food and pharmaceutical fields. PRACTICAL APPLICATION: This study provides a new approach for identifying potential antioxidants and developing functional foods from WEA, and broadens the application spectrum of wheat germ resources.


Asunto(s)
Antioxidantes , Productos Finales de Glicación Avanzada , Albúminas , Aminoácidos/química , Antioxidantes/química , Cromatografía Liquida , Productos Finales de Glicación Avanzada/química , Reacción de Maillard , Péptidos , Espectrometría de Masas en Tándem , Triticum
3.
Food Funct ; 13(5): 2559-2569, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35166271

RESUMEN

Wheat germ protein including wheat embryo albumin (WEA) demonstrates extensive biological activity. In vitro dynamic digestion of WEA was carried out under simulated gastrointestinal conditions. Anti-fatigue effects of WEA were evaluated using mice forced to swim. Results indicated that the digestibility of WEA decreased, antioxidant activity and the contents of aromatic amino acids (AAA) and hydrophobic amino acids (HAA) were significantly increased, and the ratio of essential amino acid (EAA) and non-essential amino acid (NEAA) were also changed during digestion. WEA significantly prolonged swimming time, reduced the accumulation of lactate dehydrogenase (LDH), blood urea nitrogen (BUN), and creatine kinase (CK). WEA also increased glycogen storage in liver and muscle. Meanwhile, WEA revealed antioxidant activity through enhancing the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) while decreasing the level of malondialdehyde (MDA). Notably, WEA enhanced the mRNA expression of mitochondrial biogenesis factors in the skeletal muscles of the mice. Therefore, WEA is suitable for preparation of energy foods with attractive anti-fatigue and health benefits.


Asunto(s)
Albúminas/farmacología , Antioxidantes/farmacología , Músculo Esquelético/efectos de los fármacos , Triticum , Albúminas/química , Animales , Antioxidantes/química , Compuestos de Bifenilo , Digestión/efectos de los fármacos , Masculino , Ratones , Picratos , Distribución Aleatoria , Natación
4.
Brain Res ; 1773: 147672, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606748

RESUMEN

Wheat embryo globulin nutrient (WEGN), with wheat embryo globulin (WEG) as the main functional component, is a nutritional combination that specifically targets memory impairment. In this study, we explored the protective role of WEGN on Alzheimer's disease (AD)-triggered cognitive impairment, neuronal injury, oxidative stress, and acetylcholine system disorder. Specifically, we established an AD model via administration of d-galactose (d-gal) and Aluminum chloride (AlCl3) for 70 days, then on the 36th day, administered animals in the donepezil and WEGN (300, 600, and 900 mg/kg) groups with drugs by gavage for 35 days. Learning and memory ability of the treated rats was tested using the Morris water maze (MWM) and novel object recognition (NOR) test, while pathological changes and neuronal death in their hippocampus CA1 were detected via HE staining and Nissl staining. Moreover, we determined antioxidant enzymes by measuring levels of superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) in serum, cortex, and hippocampus, whereas changes in the acetylcholine system were determined by evaluating choline acetyltransferase (ChAT), and acetylcholinesterase (AChE) activities, as well as choline acetylcholine (Ach) content. Results revealed that rats in the WEGN group exhibited significantly lower escape latency, as well as a significantly higher number of targeted crossings and longer residence times in the target quadrant, relative to those in the model group. Notably, rats in the WEGN group spent more time exploring new objects and exhibited lower damage to their hippocampus neuron, had improved learning and memory activity, as well as reversed histological alterations, relative to those in the model group. Meanwhile, biochemical examinations revealed that rats in the WEGN group had significantly lower MDA levels and AChE activities, but significantly higher GSH, SOD, and ChAT activities, as well as Ach content, relative to those in the model group. Overall, these findings indicate that WEGN exerts protective effects on cognitive impairment, neuronal damage, oxidative stress, and choline function in AD rats treated by d-gal/AlCl3.


Asunto(s)
Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Extractos Vegetales/uso terapéutico , Triticum , Cloruro de Aluminio , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Modelos Animales de Enfermedad , Donepezilo/farmacología , Donepezilo/uso terapéutico , Galactosa , Glutatión Peroxidasa/metabolismo , Hipocampo/metabolismo , Masculino , Malondialdehído/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Superóxido Dismutasa/metabolismo
5.
Food Chem Toxicol ; 153: 112240, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33932521

RESUMEN

Wheat Embryo Globulin (WEG) is a high-quality plant-derived protein with anti-inflammatory, antioxidant, and immunity enhancement effects. WEG was prepared and characterized using free amino acid analysis, circular dichroism (CD), and scanning electron microscope (SEM). The liver protection effect of WEG on mice after acute alcohol stimulation was also investigated. Male KM mice were randomly divided into four groups (n = 10). Animals were orally administrated with WEG (60 mg/kg), silymarin (50 mg/kg), and the same volume of saline solution daily for 30 days, before administering an alcohol-intragastric injection. Results displayed that the liver index, the levels of serum total cholesterol (TC), serum triglyceride (TG), liver malondialdehyde (MDA) and the mRNA expression of CYP2E1were significantly decreased in WEG-treated mice compared with the model group. Meanwhile, the levels of serum high-density lipoprotein-cholesterol (HDL-C), hepatic reduced glutathione (GSH), superoxide dismutase (SOD) and the mRNA expression of ADH2 and ALDH2 were remarkably increased. Effect of WEG on histopathology of liver tissue confirmed its protective function. Meanwhile, GSH level of ileal was significantly increased, MDA was remarkably decreased in WEG-treated mice, which also indicated that WEG possessed a positive effect on intestinal micro ecological environment health to some extent. In conclusion, WEG is a promising agent for the prevention of acute alcoholic liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Globulinas/química , Globulinas/farmacología , Semillas/química , Triticum/química , Animales , Antioxidantes/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Etanol , Microbioma Gastrointestinal , Masculino , Ratones , Proteínas de Plantas/química , Proteínas de Plantas/farmacología , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA