Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ergonomics ; 66(9): 1398-1413, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36398736

RESUMEN

Optimisation-based predictive models are widely-used to explore the lifting strategies. Existing models incorporated empirical subject-specific posture constraints to improve the prediction accuracy. However, over-reliance on these constraints limits the application of predictive models. This paper proposed a multi-phase optimisation method (MPOM) for two-dimensional sagittally symmetric semi-squat lifting prediction, which decomposes the complete lifting task into three phases-the initial posture, the final posture, and the dynamic lifting phase. The first two phases are predicted with force- and stability-related strategies, and the last phase is predicted with a smoothing-related objective. Box-lifting motions of different box initial heights were collected for validation. The results show that MPOM has better or similar accuracy than the traditional single-phase optimisation (SPOM) of minimum muscular utilisation ratio, and MPOM reduces the reliance on experimental data. MPOM offers the opportunity to improve accuracy at the expense of efforts to determine appropriate weightings in the posture prediction phases. Practitioner summary: Lifting optimisation models are useful to predict and explore the human motion strategies. Existing models rely on empirical subject-specific posture constraints, which limit their applications. A multi-phase model for lifting motion prediction was constructed. This model could accurately predict 2D lifting motions with less reliance on these constraints.

2.
Front Bioeng Biotechnol ; 10: 899799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36394018

RESUMEN

Background: The anterior cruciate ligament (ACL) is one of the most injurious parts of the knee in the biomechanical environment during landing actions. The purpose of this study was to compare the lower limb differences in movement patterns, muscle forces and ACL forces during drop landing (DL), drop vertical jump (DVJ) and forward vertical jump (FVJ). Methods: Eleven basketball and volleyball female college athletes (Division II and I) were recruited. Landing actions of DL, DVJ and FVJ, kinematics and dynamics data were collected synchronously using a motion capture system. OpenSim was used to calculate the ACL load, knee joint angle and moment, and muscle force. Results: At initial contact, different landing movements influenced knee flexion angle; DL action was significantly less than FVJ action (p = 0.046). Different landing actions affected quadriceps femoris forces; FVJ was significantly greater than DL and DVJ actions (p = 0.002 and p = 0.037, respectively). However, different landing movements had no significant effects on other variables (knee extension moment, knee valgus angle and moment, hamstring and gastrocnemius muscle forces, and ACL forces) (p > 0.050). Conclusion: There was no significant difference in the knee valgus, knee valgus moment, and the ACL forces between the three landing actions. However, knee flexion angle, knee extension moments sagittal factors, and quadriceps and gastrocnemius forces are critical factors for ACL injury. The DL action had a significantly smaller knee flexion angle, which may increase the risk of ACL injury, and not recommended to assess the risk of ACL injuries. The FVJ action had a larger knee flexion angle and higher quadriceps femoris forces that were more in line with daily training and competition needs. Therefore, it is recommended to use FVJ action in future studies on risk assessment of ACL injuries and injury prevention in female college athletes.

3.
Langmuir ; 38(35): 10817-10825, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36001808

RESUMEN

Understanding the interfacial behaviors of biomolecules is crucial to applications in biomaterials and nanoparticle-based biosensing technologies. In this work, we utilized autoencoder-based graph clustering to analyze discontinuous molecular dynamics (DMD) simulations of lysozyme adsorption on a graphene surface. Our high-throughput DMD simulations integrated with a Go̅-like protein-surface interaction model makes it possible to explore protein adsorption at a large temporal scale with sufficient accuracy. The graph autoencoder extracts a low-dimensional feature vector from a contact map. The sequence of the extracted feature vectors is then clustered, and thus the evolution of the protein molecule structure in the absorption process is segmented into stages. Our study demonstrated that the residue-surface hydrophobic interactions and the π-π stacking interactions play key roles in the five-stage adsorption. Upon adsorption, the tertiary structure of lysozyme collapsed, and the secondary structure was also affected. The folding stages obtained by autoencoder-based graph clustering were consistent with detailed analyses of the protein structure. The combination of machine learning analysis and efficient DMD simulations developed in this work could be an important tool to study biomolecules' interfacial behaviors.


Asunto(s)
Grafito , Adsorción , Análisis por Conglomerados , Grafito/química , Simulación de Dinámica Molecular , Muramidasa/química , Proteínas , Propiedades de Superficie
4.
J Biomech Eng ; 144(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318481

RESUMEN

A manual material handling task involves the phases of reaching, lifting, unloading, and standing up (RLUS). Understanding the mechanisms of manual material handling is important for occupational health and the development of assist devices. Predictive models are becoming popular in exploring which performance criterion is appropriate in the lifting phase. However, limited attempts have been performed on the other phases. The associated performance criterion for predicting other phases is unknown. In this study, an optimization model for predicting RLUS has been developed with the multi-objective optimization method. Two performance criteria (minimum dynamic effort and maximum balance) were studied to explore their importance in each phase. The result shows that maximum balance leads to joint angle errors 27.6% and 40.9% smaller than minimum dynamic effort in reaching and unloading phases, but 40.4% and 65.9% larger in lifting and standing up phases. When the two performance criteria are combined, the maximum balance could help improve the predicting accuracy in the reaching, lifting, and unloading phases. These findings suggest that people prefer different performance criteria in different phases. This study helps understand the differences in motion strategies in manual materials handling (MMH), which would be used to develop a more accurate predictive model.


Asunto(s)
Elevación , Proyectos de Investigación , Humanos
5.
J Chem Theory Comput ; 17(3): 1874-1882, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33586958

RESUMEN

Fundamental understanding of biomolecular interfacial behavior, such as protein adsorption at the microscopic scale, is critical to broad applications in biomaterials, nanomedicine, and nanoparticle-based biosensing techniques. The goal of achieving both computational efficiency and accuracy presents a major challenge for simulation studies at both atomistic and molecular scales. In this work, we developed a unique, accurate, high-throughput simulation method which, by integrating discontinuous molecular dynamics (DMD) simulations with the Go-like protein-surface interaction model, not only solves the dynamics efficiently, but also describes precisely the protein intramolecular and intermolecular interactions at the atomistic scale and the protein-surface interactions at the coarse-grained scale. Using our simulation method and in-house developed software, we performed a systematic study of α-helical ovispirin-1 peptide adsorption on a graphene surface, and our study focused on the effect of surface hydrophobic interactions and π-π stacking on protein adsorption. Our DMD simulations were consistent with full-atom molecular dynamics simulations and showed that a single ovispirin-1 peptide lay down on the flat graphene surface with randomized secondary structure due to strong protein-surface interactions. Peptide aggregates were formed with an internal hydrophobic core driven by strong interactions of hydrophobic residues in the bulk environment. However, upon adsorption, the hydrophobic graphene surface can break the hydrophobic core by denaturing individual peptide structures, leading to disassembling the aggregate structure and further randomizing the ovispirin-1 peptide's secondary structures.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Grafito/química , Simulación de Dinámica Molecular , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Programas Informáticos , Propiedades de Superficie
6.
Biophys J ; 120(1): 64-72, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33253636

RESUMEN

Poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) proteins are believed to be the most toxic dipeptide repeat (DPR) proteins that are expressed by the hexanucleotide repeat expansion mutation in C9ORF72, which are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) diseases. Their structural information and mechanisms of toxicity remain incomplete, however. Using molecular dynamics simulation and all-atom model of proteins, we study folding and aggregation of both poly-PR and poly-GR. The results indicate formation of double-helix structure during the aggregation of poly-PR into dimers, whereas no stable aggregate is formed during the aggregation of poly-GR; the latter only folds into α-helix and double-helix structures that are similar to those formed in the folding of poly-glycine-alanine (poly-GA) protein. Our findings are consistent with the experimental data indicating that poly-PR and poly-GR are less likely to aggregate because of the hydrophilic arginine residues within their structures. Such characteristics could, however, in some respect facilitate migration of the DPR proteins between and within cells and, at the same time, give proline residues the benefits of activating the receptors that regulate ionotropic effect in neurons, resulting in death or malfunction of neurons because of the abnormal increase or decrease of the ion transmission. This may explain the neurotoxicities of poly-PR and poly-GR associated with many neurodegenerative diseases. To our knowledge, this is the first molecular dynamics simulation of the phenomena involving poly-PR and poly-GR proteins.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Proteína C9orf72 , Dipéptidos , Humanos , Simulación de Dinámica Molecular , Proteínas
7.
J Biomed Nanotechnol ; 16(7): 1135-1143, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33308380

RESUMEN

Different secondary structures of the pep-1 protein were blamed for transmembrane internalization process of drugs and drug deliveries. But which structure will be important for transmembrane delivery was still not clear. In this study, interactions between pep-1 and cell membranes were studied. Pep-1 in the buffer (Pep-1) and pep-1 on graphene (PDS/G) or they on graphene oxide (PDS/GO) were composed as the transmembrane delivery system to study the different secondary structure of pep-1 that influence for their transmembrane delivery. The curves of chirascan circular dichroism (CD) and all-atom discontinuous molecular dynamics (DMD) simulations illuminate that, in a buffer environment, most pep-1 formed 3-10 helix structures. Meanwhile, when Pep-1 composed graphene slice and formed PDS/G, 3-10 helix and alpha-helix structures can be found in small quantities. When they on graphene oxide and formed PDS/GO, coil or type II beta-turn structure can be found from most of the pep-1 and 3-10 helix structure disappeared. By using sum-frequency generation (SFG) vibrational spectroscopy, we found that pep-1 with 3-10 helix structures in buffer solutions damaged the lipid bilayer violently. PDS/G with less 3-10 helix structures will change the orientation of lipid bilayer effectively but slightly. Pep-1 with coil or type II Beta-turn in PDS/GO cannot influence the structure of lipid bilayers. Hemolysis experiments also proved that when pep-1 composed as PDS/G, they will change the orientation of the plasma membrane of red blood cells effectively but slightly. When they attach on the GO and formed PDS/GO, the plasma membrane of red blood cells cannot be influenced. In conclusion, 3-10 helix structures will be positively correlated with disturbance of membranes. These results will be effectively guided the clinic application of pep-1 as a transporter of the drug delivery system.


Asunto(s)
Péptidos de Penetración Celular , Membrana Celular , Dicroismo Circular , Membrana Dobles de Lípidos , Estructura Secundaria de Proteína
8.
J Chem Phys ; 150(14): 144307, 2019 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-30981220

RESUMEN

Poly-glycine-alanine (poly-GA) proteins are widely believed to be one of the main toxic dipeptide repeat molecules associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia diseases. Using discontinuous molecular dynamics simulation and an all-atom model of the proteins, we study folding, stability, and aggregation of poly-GA. The results demonstrate that poly-GA is an aggregation-prone protein that, after a long enough time, forms ß-sheet-rich aggregates that match recent experiment data and that two unique helical structures are formed very frequently, namely, ß-helix and double-helix. The details of the two structures are analyzed. The analysis indicates that such helical structures are stable and share the characteristics of both α-helices and ß-sheets. Molecular simulations indicate that identical phenomena also occur in the aggregation of poly-glycine-arginine (poly-GR). Therefore, we hypothesize that proteins of type (GX)n in which X may be any non-glycine amino acid and n is the repeat length may share the same folding structures of ß-helix and double-helix and that it is the glycine in the repeat that contributes the most to this characteristic. Molecular dynamics simulation with continuous interaction potentials and explicit water molecules as the solvent supports the hypothesis. To our knowledge, this is the first molecular dynamics simulation of the phenomena involving poly-GA and poly-GR proteins.

9.
J Chem Phys ; 148(10): 104305, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29544316

RESUMEN

In this paper, the second in a series devoted to molecular modeling of protein aggregation, a mesoscale model of proteins together with extensive discontinuous molecular dynamics simulation is used to study the phenomenon in a confined medium. The medium, as a model of a crowded cellular environment, is represented by a spherical cavity, as well as cylindrical tubes with two aspect ratios. The aggregation process leads to the formation of ß sheets and eventually fibrils, whose deposition on biological tissues is believed to be a major factor contributing to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis diseases. Several important properties of the aggregation process, including dynamic evolution of the total number of the aggregates, the mean aggregate size, and the number of peptides that contribute to the formation of the ß sheets, have been computed. We show, similar to the unconfined media studied in Paper I [S. Zheng et al., J. Chem. Phys. 145, 134306 (2016)], that the computed properties follow dynamic scaling, characterized by power laws. The existence of such dynamic scaling in unconfined media was recently confirmed by experiments. The exponents that characterize the power-law dependence on time of the properties of the aggregation process in spherical cavities are shown to agree with those in unbounded fluids at the same protein density, while the exponents for aggregation in the cylindrical tubes exhibit sensitivity to the geometry of the system. The effects of the number of amino acids in the protein, as well as the size of the confined media, have also been studied. Similarities and differences between aggregation in confined and unconfined media are described, including the possibility of no fibril formation, if confinement is severe.

10.
J Chem Phys ; 145(13): 134306, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27782447

RESUMEN

It is well understood that in some cases proteins do not fold correctly and, depending on their environment, even properly-folded proteins change their conformation spontaneously, taking on a misfolded state that leads to protein aggregation and formation of large aggregates. An important factor that contributes to the aggregation is the interactions between the misfolded proteins. Depending on the aggregation environment, the aggregates may take on various shapes forming larger structures, such as protein plaques that are often toxic. Their deposition in tissues is a major contributing factor to many neuro-degenerative diseases, such as Alzheimer's, Parkinson's, amyotrophic lateral sclerosis, and prion. This paper represents the first part in a series devoted to molecular simulation of protein aggregation. We use the PRIME, a meso-scale model of proteins, together with extensive discontinuous molecular dynamics simulation to study the aggregation process in an unbounded fluid system, as the first step toward MD simulation of the same phenomenon in crowded cellular environments. Various properties of the aggregates have been computed, including dynamic evolution of aggregate-size distribution, mean aggregate size, number of peptides that contribute to the formation of ß sheets, number of various types of hydrogen bonds formed in the system, radius of gyration of the aggregates, and the aggregates' diffusivity. We show that many of such quantities follow dynamic scaling, similar to those for aggregation of colloidal clusters. In particular, at long times the mean aggregate size S(t) grows with time as, S(t) ∼ tz, where z is the dynamic exponent. To our knowledge, this is the first time that the qualitative similarity between aggregation of proteins and colloidal aggregates has been pointed out.


Asunto(s)
Amiloide/química , Coloides , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Coloides/química , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...