Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Br J Hosp Med (Lond) ; 85(9): 1-12, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39347672

RESUMEN

Kawasaki disease (KD), which is also known as cutaneous mucosal lymph node syndrome, is an acute, self-limiting, necrotizing vasculitis with unclear cause that primarily affects small- and medium-sized blood vessels and most commonly affects children aged 6 months to 5 years. Currently, diagnosis is based primarily on typical clinical symptoms. Approximately 15%-20% of patients are highly suspected of having KD; however, they do not match the diagnostic criteria for typical KD, which is referred to as incomplete Kawasaki disease (IKD), and this has become a major challenge in the diagnosis and treatment of KD. We describe a case of a 7-year-old boy who had a fever and jaundice as his initial symptoms. After a series of clinical laboratory and imaging examinations and marked improvement of symptoms after treatment with intravenous immunoglobulin (IVIG), IKD was considered as the diagnosis. When children present with jaundice and fever, physicians should consider KD as a possible diagnosis to ensure early detection and treatment of the disease.


Asunto(s)
Fiebre , Inmunoglobulinas Intravenosas , Ictericia , Síndrome Mucocutáneo Linfonodular , Humanos , Síndrome Mucocutáneo Linfonodular/diagnóstico , Síndrome Mucocutáneo Linfonodular/complicaciones , Masculino , Fiebre/etiología , Niño , Ictericia/etiología , Inmunoglobulinas Intravenosas/uso terapéutico , Factores Inmunológicos/uso terapéutico
2.
J Colloid Interface Sci ; 676: 186-196, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39024819

RESUMEN

Photocatalytic hydrogen evolution is widely recognized as an environmentally friendly approach to address future energy crises and environmental issues. However, rapid recombination of photo-induced charges over carbon nitride in lateral and vertical direction hinder this process. Herein, we proposed an effective strategy involving the embedding of benzene rings and the intercalation of platinum atoms on carbon nitride for a controlled intralayer and interlayer charges flow. Modified carbon nitride exhibits a significant higher hydrogen evolution rate (6288.5 µmol/g/h), which is 42 times greater than that of pristine carbon nitride. Both experiments and simulations collectively indicate that the improved photocatalytic activities can be attributed to the adjustment of the highly symmetric structure of carbon nitride, achieved by embedding benzene rings to induce the formation of an intralayer build-in electric field and intercalating Pt atoms to enhance interlayer polarization, which simultaneously accelerate lateral and vertical charges migration. This dual-direction charges separation mechanism in carbon nitride provides valuable insights for the development of highly active photocatalysis.

3.
Arch Gynecol Obstet ; 310(3): 1555-1562, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38955819

RESUMEN

PURPOSE: This is a retrospective comparative study. We aimed to analyze the results of karyotype and chromosomal microarray analysis (CMA) of amniotic fluid across different gestational weeks and evaluate the clinical value in prenatal diagnosis, particularly in the late pregnancies. METHODS: Samples from 580 pregnant women of 18-23 weeks of gestation (mid-gestation group) and 196 pregnant women of 24-32 weeks of gestation (late group) were performed both standard G-band karyotype analysis and CMA. RESULTS: Among the 580 pregnant women in the routine group, the most common indications were positive Down's screening (213/580, 36.7%), followed by advanced maternal age (196/580, 33.8%); while fetal structural anomalies on ultrasonography were the top reason for amniocentesis in the late group (56/196, 28.6%). In the routine group, the total detection rate was 12.1% (70/580), of which 4.1% (24/580) were identified by karyotype analysis and 11.2% (65/580) by CMA. The total detection rate was 15.3% (30/196) in the late group, of which 5.1% (10/196) were detected by karyotype analysis, and 14.3% (28/196) by CMA. CONCLUSION: Karyotype analysis and CMA are complementary in detecting chromosomal abnormalities. Amniotic cavity puncture in the karyotype analysis in 18-23 weeks of gestation and 24-32 weeks of gestation is safe and effective, more obvious effect on the latter.


Asunto(s)
Amniocentesis , Cariotipificación , Análisis por Micromatrices , Humanos , Femenino , Embarazo , Estudios Retrospectivos , Cariotipificación/métodos , Adulto , Análisis por Micromatrices/métodos , Edad Gestacional , Aberraciones Cromosómicas , Adulto Joven , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Cariotipo , Edad Materna , Diagnóstico Prenatal/métodos
4.
Plant Physiol ; 196(2): 1642-1658, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39082752

RESUMEN

NAC (NAM, ATAF1/2, and CUC2) family transcription factors are involved in several cellular processes, including responses to drought, salinity, cold, and submergence. However, whether or how certain NAC proteins regulate drought tolerance in rice (Oryza sativa) remain unclear. In this study, we show that overexpression of OsNAC78 enhanced rice resistance to drought treatment, whereas Osnac78 mutant plants were susceptible to drought stress. We further characterized the OsNAC78 interacting protein, named NAC78 interacting protein 6 (OsNACIP6), and found that it conferred rice drought tolerance. Our results demonstrate that OsNACIP6 enhanced the transcription of OsNAC78 and promoted the expression of its downstream target OsGSTU37, encoding a glutathione reductase. The ABRE4 cis-element in the promoter region of OsNACIP675-1-127 conferred significant upregulation of OsNACIP6 expression and initiated the OsNACIP6/OsNAC78-OsGSTU37 module that facilitates rice growth under drought conditions. Together, our results uncover a transcriptional module composed of OsNACIP6, OsNAC78, and OsGSTU37 and provide insights into the molecular mechanisms underlying the drought stress response in rice.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Factores de Transcripción , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente , Adaptación Fisiológica/genética , Regiones Promotoras Genéticas/genética , Resistencia a la Sequía
5.
ACS Appl Mater Interfaces ; 16(26): 33993-34000, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38910293

RESUMEN

Graphene is widely used in excellent thermal interface materials (TIMs), thanks to its remarkably high in-plane thermal conductivity (k∥). However, the poor through-plane thermal conductivity (k⊥) limits its further application. Here, we developed a simple in situ growth method to prepare graphene-based thermal interface composites with positively temperature-dependent thermal conductivity, which loaded aluminum (Al) nanoparticles onto graphene nanoplatelets (GNPs). To evaluate the variations in thermal performance, we determined the thermal diffusivity and specific heat capacity of the composites using a laser-flash analyzer and a differential scanning calorimeter, respectively. The Al nanoparticles act as bridges between the nanoplatelets, enhancing the k⊥ of the 1.3-Al/GNPs composite to 11.70 W·m-1·K-1 at 25 °C. Even more remarkably, those nanoparticles led to a unique increase in k⊥ with temperature, reaching 20.93 W·m-1·K-1 at 100 °C. Additionally, we conducted an in-depth investigation of the thermal conductivity mechanism of the Al/GNPs composites. The exceptional heat transport property enabled the composites to exhibit a superior heat dissipation performance in simulated practical applications. This work provides valuable insights into utilizing graphene in composites with Al nanoparticles, which have special thermal conductivity properties, and offers a promising pathway to enhance the k⊥ of graphene-based TIMs.

6.
ChemSusChem ; 17(19): e202400472, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38705869

RESUMEN

Hydrogen peroxide (H2O2) has been considered an energy carrier (fuel) and oxidizer for various chemical synthesis and environmental remediation processes. Biomass valorization can generate high-value-added products in a green and pollution-free way to solve the energy and environmental crisis. The biomass valorization coupled with H2O2 generation via photo-, electro-, and photoelectrocatalysis plays a positive role in sustainable targets, which can maximize energy utilization and realize the production of value-added products and fuel synthesis. Recently, catalyst design and mechanism studies in H2O2 generation coupled with biomass valorization are in the infancy stage. Herein, this review begins with a background on photo-, electro-, and photoelectrocatalytic techniques for H2O2 generation, biomass valorization, and the H2O2 generation couples with biomass valorization. Meanwhile, the progress and reaction mechanism are reviewed. Finally, the prospects and challenges of a synergistic coupled system of H2O2 synthesis and value-added biomass in achieving high conversion, selectivity, and reaction efficiency are envisioned.

7.
ACS Nano ; 18(22): 14583-14594, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38722840

RESUMEN

Direct photosynthesis of hydrogen peroxide (H2O2) from water and oxygen represents an intriguing alternative to the current indirect process involving the reduction and oxidation of quinones. However, limited light utilization and sluggish charge transfer largely impede overall photocatalytic efficiency. Herein, we present a heavily doped carbon nitride (CNKLi) nanocrystal for efficient and selective photoproduction of H2O2 via a two-electron oxygen reduction reaction (ORR) pathway. CNKLi induces metal-to-ligand charge transfer (MLCT) and electron trapping, which broadens the light absorption to the visible-near-infrared (vis-NIR) spectrum and prolongs the photoelectron lifetime to the microsecond time scale with an exceptional charge diffusion length of ∼1200 nm. Near-unit photoutilization with an apparent quantum yield (AQY) of 100% for H2O2 generation is achieved below 420 nm. Impressively, CNKLi exhibits an appreciable AQY of 16% at 700 nm, which reaches the absorption capacity (∼16%), thus suggesting a near-unit photon utilization <700 nm. In situ characterization and theoretical calculations reveal the facilitated charge transfer from K+ to the heptazine ring skeleton. These findings provide an approach to improve the photosynthetic efficiency of direct H2O2 preparation in the vis-NIR region and expand applications for driving kinetically slow and technologically desirable oxidations or high-value chemical generation.

8.
Nanoscale ; 16(19): 9516-9524, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38656251

RESUMEN

Metal organic frameworks (MOFs) with binder-free electrodes have shown promise for portable electrochemical energy storage applications. However, their low specific capacitance and challenges associated with the attachment of active materials to the substrate constrain their practical utility. In this research, we prepared a CoNi0.5-MOF/CC electrode by in situ growth of CoNi0.5-MOF on an H2O2-pretreated carbon cloth (CC) without using any binder. It exhibits a higher specific capacitance of 1337.5 F g-1 than that of CoNi0.5-MOF (∼578 F g-1) at a current density of 1 A g-1 and an excellent rate ability of 88% specific capacitance retention at a current density of 10 A g-1 after 6000 cycles. The as-assembled flexible asymmetric solid-state supercapacitor based on the CoNi0.5-MOF/CC positive electrode and a nitrogen-doped graphene (N-Gr) negative electrode exhibits an energy density of 61.46 W h kg-1 at a power density of 1244.56 W kg-1 and holds a stable capacitance of ∼125 F g-1 at 1 A g-1 when the flexible supercapacitor is bent, showing great potential for flexible electronics application. The H2O2 is indicated to play an important role, enhancing the adhesion of CoNi0.5-MOF on CC and reducing its charge transfer resistance by functionalizing the carbon fiber during the pretreatment of the CC matrix. The results provide a great way to prepare a flexible asymmetric solid-state supercapacitor with both high power density and high energy density for practical application.

9.
Front Biosci (Landmark Ed) ; 29(4): 139, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38682178

RESUMEN

BACKGROUND: Hypoxic-ischaemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although hypothermia therapy offers some neuroprotection, the recovery of neurological function is limited. Therefore, new synergistic therapies are necessary to improve the prognosis. Mesenchymal stem cell-based therapy is emerging as a promising treatment option for HIE. In this study, we studied the therapeutic efficacy of human placenta-derived mesenchymal stem cells (PD-MSCs) in the HIE rat model and analyzed the underlying therapeutic mechanisms. METHODS: Rats were divided into 6 groups (n = 9 for each) as follows: control, HIE model, HIE + normal saline, and HIE + PD-MSC transplantation at days 7, 14 and 28 postpartum. Following PD-MSC transplantation, neurological behavior was evaluated using rotarod tests, traction tests, and the Morris water maze test. The degree of brain tissue damage was assessed by histological examination and Nissl staining. Expression levels of apoptosis-related proteins and inflammatory factors were quantified by Western blotting and enzyme-linked immunosorbent assays. Immunofluorescence was used to investigate the ability of PD-MSCs to repair the morphology and function of hippocampal neurons with hypoxic-ischaemic (HI) injury. RESULTS: PD-MSC transplantation enhanced motor coordination and muscle strength in HIE rats. This treatment also improved spatial memory ability by repairing pathological damage and preventing the loss of neurons in the cerebral cortex. The most effective treatment was observed in the HIE + PD-MSC transplantation at day 7 group. Expression levels of microtubule-associated protein-2 (MAP-2), B-cell lymphoma-2 (BCL-2), interleukin (IL)-10, and transforming growth factor (TGF -ß1) were significantly higher in the HIE + PD-MSC treatment groups compared to the HIE group, whereas the levels of BCL-2-associated X protein (BAX), BCL-2-associated agonist of cell death (BAD), IL-1ß and tumour necrosis factor α (TNF-α) were significantly lower. CONCLUSIONS: We demonstrated that intravenous injection of PD-MSC at 7, 14 and 28 days after intrauterine HI damage in a rat model could improve learning, memory, and motor function, possibly by inhibiting apoptosis and inflammatory damage. These findings indicate that autologous PD-MSC therapy could have potential application for the treatment of HIE.


Asunto(s)
Apoptosis , Hipoxia-Isquemia Encefálica , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Placenta , Ratas Sprague-Dawley , Animales , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Embarazo , Hipoxia-Isquemia Encefálica/terapia , Humanos , Placenta/citología , Células Madre Mesenquimatosas/citología , Ratas , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación/terapia , Neuronas/metabolismo , Masculino
10.
Cognition ; 247: 105761, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38520793

RESUMEN

There are three views of cognitive representation: the amodal, strong-embodiment, and weak-embodiment views of cognition. The present research provides support for the weak-embodiment view by demonstrating that two representational systems, one conceptual and one perceptual, underlie the cognitive processing of sensory experiences. We find that an initial sensory experience can exert two independent influences on judgments about a subsequent sensory experience. Specifically, we show that the conceptual representation of an initial sensory experience creates an expectation that biases judgments of the subsequent experience toward the initial experience (i.e., an assimilation bias), while the perceptual representation of an initial sensory experience creates a comparison standard that biases judgments of the subsequent experience away from the initial experience (i.e., a contrast bias). Documenting concurrent assimilation and contrast biases supports the claim of a dual representational system espoused by the weak-embodiment view. In so doing, we update the classic literature on context effects and contribute to the debate on representational systems in cognition.

11.
Front Med (Lausanne) ; 10: 1259680, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38105903

RESUMEN

Background: Cadmium (Cd) is a heavy metal associated with several human disorders. Preeclampsia is a major cause of maternal mortality worldwide. The association between maternal Cd exposure and preeclampsia remains elusive. Methods: To better understand this relationship, we conducted a systematic review and meta-analysis of eligible studies from five databases (PubMed, Embase, Web of Science, Scopus, and CNKI) from their inception to September 10, 2022. The quality of these studies was evaluated using the Newcastle-Ottawa quality assessment scale (NOS). We use random-effects models to calculate overall standardized mean differences (SMDs) and 95% confidence intervals (CIs). Sensitivity analyses were performed to assess the robustness of our results. We also evaluated publication bias using Egger's and Begg's tests. Additionally, we conducted meta-regression and sub-group analyses to identify potential sources of heterogeneity between studies. Results: Our analysis included a total of 17 studies with 10,373 participants. We found a significant association between maternal cadmium exposure and the risk of preeclampsia (SMD 0.27, 95% CI 0.09-0.44, p < 0.01). No significant publication bias was detected in Begg's or Egger's tests. Meta-regression suggested that geographical location, year of publication, cadmium samples, sample size, and measurement methods did not contribute to heterogeneity between studies. Conclusion: Our findings suggest that maternal blood cadmium levels are associated with an increased risk of preeclampsia. In contrast, the pregnant women's urine or placental levels of cadmium may not suggest preeclamptic risk during pregnancy. Further high-quality clinical studies and animal experiments are needed to understand this association better. Systematic review registration: PROSPERO, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=361291, identifier: CRD42022361291.

12.
ACS Omega ; 8(37): 33883-33890, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37744836

RESUMEN

Combustion and explosion accidents of the mixture may occur after the adsorption of volatile organic compounds (VOCs) by coal-based activated carbon (CBAC). It is of great significance to explore the oxidation and combustion performance of CBAC before and after adsorbing VOCs in order to prevent the reoccurrence of fire and explosion. Based on the CBAC sample commonly used in industrial production, three types of CBAC samples after adsorbing VOCs, i.e., acetone, cyclohexane, and butyl acetate, were prepared. The oxidation and combustion characteristics of the samples before and after adsorbing VOCs are measured and analyzed by thermal analyzer and cone calorimeter. Thermal analysis results indicate that during the oxidation process, the VOCs in the adsorbed samples will burn in the early stage, generating amounts of heat which may accelerate the oxidation and combustion of CBAC. According to the combustion performance experiments by cone calorimeter, it is also found that the combustion rate of CBAC after adsorbing VOCs is significantly enhanced. The time to ignition is shortened, the heat release rate becomes larger, and the time to reach the peak of heat release rate is significantly moved forward. In addition, the CO yield of the adsorbed sample is significantly improved. In general, VOC adsorption in CBAC can promote oxidation reactions and may result in an enhanced combustibility of CBAC.

13.
Chemosphere ; 335: 139086, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37263513

RESUMEN

Although advanced oxidation processes (AOPs) based on persulfate (PS) is an attractive approach for repairing polycyclic aromatic hydrocarbons (PAHs) contaminated soils, limited oxidizability of PAHs and efficient in-situ activation of PS hinder its practical applications. In this study, we comprehensively examined the contributions of five representative surfactants on the oxidative remediation of PAHs-contaminated soil in terms of degradation kinetics of the pollutants, and further proposed an innovative coupling strategy of surfactant-enhanced thermally activated PS remediating PAHs-contaminated soil. The results showed that the degradation process of PAHs in soil was significantly facilitated only via adding sodium dodecyl benzenesulfonate (SDBS) and fitted the pseudo-first-order kinetic pattern. The removal of phenanthrene (PHE) reached 98.56% at 50 mM PS, 50 °C, 5 g L-1 SDBS and 48 h reaction time, accompanying an increase of 25% in reaction rate constant from 0.0572 h-1 (without SDBS) to 0.0715 h-1. More importantly, SDBS-enhanced thermally activated PS degrading PAHs with higher benzene rings were more effective as the reaction rate constants of pyrene (PYR) and benzo(a)anthracene (BaA) were significantly increased by 49.40% and 56.86%. Additionally, only appropriate dosages (5-10 g L-1) of SDBS facilitated the oxidative degradation of PHE, as well as the aging time of contaminant-soil contact slowed down the enhancement of oxidative degradation of PHE by SDBS. Scavenger experiments demonstrated that SO4·- and 1O2 were the dominant reactive oxygen species. Finally, a possible oxidative degradation pathway of PHE was proposed, and the toxicity of derived intermediates got alleviation by the assessment using the Toxicity Estimation Software Tool. This investigation was promising for in situ scale-up remediation of PAHs-contaminated soil.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Surfactantes Pulmonares , Contaminantes del Suelo , Tensoactivos , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/análisis
14.
J Biochem Mol Toxicol ; 37(7): e23363, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37020384

RESUMEN

Rolipram is a selective phosphodiesterase-4 (PDE4) inhibitor. The effect of rolipram on the metastasis of choriocarcinoma is barely known. Here, we evaluated the role of rolipram in the migration and invasion of human choriocarcinoma cells in vitro. Human choriocarcinoma cells lines JEG3 and JAR were used in this study. The expression profile of PDE4 subfamily members in choriocarcinoma cells was evaluated using real-time PCR. The migration and invasion properties of choriocarcinoma cells before and after inhibition of PDE4 by rolipram or RNAi-directed knockdown were evaluated in vitro. Expression levels of MMP9, TIMP1, E-cadherin, vimentin, TGFß1, SMAD1, and SMAD4 of choriocarcinoma cells were compared before and after rolipram treatment, RNAi-directed knockdown of PDE4D, and overexpression of PDE4D. We found PDE4D was the most commonly expressed isoform of PDE4 both in JEG3 and JAR cells. Rolipram and knockdown of PDE4D were efficient to inhibit the migration and invasion of choriocarcinoma cells in vitro, accompanied by decreased expression of MMP9 and TIMP1. Furthermore, rolipram and knockdown of PDE4D promoted the expression of E-cadherin but reduced the expression of vimentin in choriocarcinoma cells, and overexpression of PDE4D decreased the expression of E-cadherin but promoted the expression of vimentin. Rolipram suppressed migration and invasion of human choriocarcinoma cells in vitro, possibly by inhibiting epithelial-mesenchymal transition through PDE4 inhibition.


Asunto(s)
Coriocarcinoma , Inhibidores de Fosfodiesterasa 4 , Embarazo , Femenino , Humanos , Rolipram/farmacología , Rolipram/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Metaloproteinasa 9 de la Matriz/genética , Vimentina , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Inhibidores de Fosfodiesterasa 4/farmacología
15.
Plant Sci ; 331: 111674, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36948404

RESUMEN

Glycosylinositol phosphorylceramides (GIPCs) are the major sphingolipids in the plant plasma membrane. In Arabidopsis, mutations of genes involved in the synthesis of GIPCs affect many physiological aspects of plants, including growth, pollen fertility, defense, and stress signaling. Loss of function of the GIPC MANNOSYL-TRANSFERASE1 (AtGMT1) results in GIPC misglycosylation and induces plant immune responses accompanied by a severely dwarfed phenotype, thus indicating that GIPCs play important roles in plant immunity. Here, we investigated the enzymatic activity and phenotypes of transgenic lines of OsGMT1, the ortholog of AtGMT1. Sphingolipidomic analysis indicated that OsGMT1 retained the enzymatic activity of GIPC hexose (Hex) glycosylation, but the knockout lines did not accumulate H2O2. In contrast, the OsGMT1 overexpression lines showed significant down-regulation of several defense-associated or cell wall synthesis-associated genes, and enhanced sensitivity to rice blast. Furthermore, we first demonstrated the sensitivity of rice cells to MoNLP1 protein through calcein AM release assays using rice protoplasts, thus legitimizing the presence of MoNLPs in rice blast fungus. In addition, yeast two-hybrid screens using OsGMT1 as bait revealed that OsGMT1 may regulate heading time through the OsHAP5C signaling pathway. Together, our findings suggested clear physiological functional differentiation of GMT1 orthologs between rice and Arabidopsis.


Asunto(s)
Arabidopsis , Oryza , Arabidopsis/metabolismo , Peróxido de Hidrógeno/metabolismo , Esfingolípidos/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Inmunidad de la Planta/genética , Oryza/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
16.
BMC Plant Biol ; 23(1): 11, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36604645

RESUMEN

BACKGROUND: The sterile lemma is a unique organ of the rice (Oryza sativa L.) spikelet. However, the characteristics and origin of the rice sterile lemma have not been determined unequivocally, so it is important to elucidate the molecular mechanism of the development of the sterile lemma. RESULTS: In the paper, we outline the regulatory mechanism of sterile lemma development by LONG STERILE LEMMA1 (G1), which has been identified as the gene controlling sterile lemma development. Based on the comprehensive analyses of transcriptome dynamics during sterile lemma development with G1 alleles between wild-type (WT) and mutant (MT) in rice, we obtained co-expression data and regulatory networks related to sterile lemma development. Co-transfection assays of rice protoplasts confirmed that G1 affects the expression of various phytohormone-related genes by regulating a number of critical transcription factors, such as OsLBD37 and OSH1. The hormone levels in sterile lemmas from WT and MT of rice supports the hypotheses that lower auxin, lower gibberellin, and higher cytokinin concentrations are required to maintain a normal phenotype of sterile lemmas. CONCLUSION: The regulatory networks have considerable reference value, and some of the regulatory relationships exhibiting strong correlations are worthy of further study. Taken together, these work provided a detailed guide for further studies into the molecular mechanism of sterile lemma development.


Asunto(s)
Oryza , Redes Reguladoras de Genes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación
17.
Mol Plant ; 15(12): 1931-1946, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36321201

RESUMEN

Plants usually keep resistance (R) proteins in a static state under normal conditions to avoid autoimmunity and save energy for growth, but R proteins can be rapidly activated upon perceiving pathogen invasion. Pib, the first cloned blast disease R gene in rice, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, mediates resistance to the blast fungal (Magnaporthe oryzae) isolates carrying the avirulence gene AvrPib. However, the molecular mechanisms about how Pib recognizes AvrPib and how it is inactivated and activated remain largely unclear. In this study, through map-based cloning and CRISPR-Cas9 gene editing, we proved that Pib contributes to the blast disease resistance of rice cultivar Yunyin (YY). Furthermore, an SH3 domain-containing protein, SH3P2, was found to associate with Pib mainly at clathrin-coated vesicles in rice cells, via direct binding with the coiled-coil (CC) domain of Pib. Interestingly, overexpression of SH3P2 in YY compromised Pib-mediated resistance to M. oryzae isolates carrying AvrPib and Pib-AvrPib recognition-induced cell death. SH3P2 competitively inhibits the self-association of the Pib CC domain in vitro, suggesting that binding of SH3P2 with Pib undermines its homodimerization. Moreover, SH3P2 can also interact with AvrPib and displays higher affinity to AvrPib than to Pib, which leads to dissociation of SH3P2 from Pib in the presence of AvrPib. Taken together, our results suggest that SH3P2 functions as a "protector" to keep Pib in a static state by direct interaction during normal growth but could be triggered off by the invasion of AvrPib-carrying M. oryzae isolates. Our study reveals a new mechanism about how an NLR protein is inactivated under normal conditions but is activated upon pathogen infection.


Asunto(s)
Oryza , Dominios Homologos src , Oryza/genética
18.
Nanoscale ; 14(42): 15908-15917, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36268823

RESUMEN

The complicated preparation process and low energy density of polyaniline (PANI)-based electrodes limit their wide applications in flexible energy storage devices. In this work, a reduced graphene (rGO)-wrapped polyaniline nanofiber network (PANI-NFN)/oxidized carbon cloth (OCC) (rGO@PANI-NFN/OCC) composite was prepared by a facile impregnation method using reactive templates of MnO2 on the surface of OCC. The as-prepared rGO@PANI-NFN/OCC composite exhibited a high area specific capacitance of 4438 mF cm-2 and maintained an initial capacitance of 88.2% after 3000 GCD cycles. It can be used as an independent electrode to construct flexible solid-state supercapacitors (FSSCs), and the FSSCs based on rGO@PANI-NFN/OCC also exhibit a high energy density of 117.9 µW h cm-2 and 88.39% retention after 500 bending cycles, which shows a great prospect for flexible energy storage device applications. The enhanced performance of rGO@PANI-NFN/OCC composites is mainly attributed to the synergistic effect of PANI-NFN structures with a large specific surface area and a rGO wrap layer to reduce the swelling and shrinking of PANI.

19.
Front Public Health ; 10: 968045, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979462

RESUMEN

Background: Preeclampsia (PE) is a multi-organ syndrome that onsets in the second half of pregnancy. It is the second leading cause of maternal death globally. The homeostasis of zinc (Zn) levels is important for feto-maternal health. Objective: We aimed to collect all studies available to synthesize the evidence regarding the association between maternal Zn levels and the risk of preeclampsia. Methods: A systematic review and meta-analysis was conducted via searching seven electronic databases [PubMed, Web of Science, Embase, African Journals Online (AJOL), ClinicalTrial.gov, and two Chinese databases: Wanfang and Chinese National Knowledge Infrastructure, CNKI]. Studies reporting maternal serum Zn levels in pregnant women with or without preeclampsia were included. Eligible studies were assessed through Newcastle-Ottawa Scale (NOS) and the meta-analysis was performed via RevMan and Stata. The random-effects method (REM) was used for the meta-analysis with 95% confidence interval (CI). The pooled result was assessed using standard mean difference (SMD). The heterogeneity test was carried out using I 2 statistics, and the publication bias was evaluated using Begg's and Egger's test. Meta-regression and sensitivity analysis was performed via Stata software. Results: A total of 51 studies were included in the final analysis. 6,947 participants from 23 countries were involved in our study. All studies went through the quality assessment. The pooled results showed that maternal serum Zn levels were lower in preeclamptic women than in healthy pregnant women (SMD: -1.00, 95% CI: -1.29, -0.70). Sub-group analysis revealed that geographical, economic context, and disease severity may further influence serum Zn levels and preeclampsia. Limitations: There are significant between-study heterogeneity and publication bias among included studies. Conclusions: A lower level of maternal Zn was associated with increased risks of preeclampsia. The associations were not entirely consistent across countries and regions worldwide. Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=337069, Identifier: CRD42022337069.


Asunto(s)
Preeclampsia , Pueblo Asiatico , Femenino , Humanos , Embarazo , Mujeres Embarazadas , Zinc
20.
Comput Math Methods Med ; 2022: 8574000, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35979051

RESUMEN

Deep learning is a new learning concept and a highly effective way of learning, which is still being explored in the field of nursing education. This paper analyses the effectiveness of interventions in perioperative gynaecological care using humanised care in the operating theatre and the impact of this model of care on patients' psychological well-being and sleep quality. A deep learning-based vision robot was designed to provide higher quality of care for our human care and simplify our approach to gynaecological surgery. The anxiety and depression scores of the two groups were significantly improved after and before care, and the scores of the observation group were lower than those of the control group, with a statistically significant difference (P < 0.05). The humanised care for gynaecological surgery patients in the perioperative period is more conducive to the improvement of their negative emotions and at the same time can improve the sleep quality of patients, so it can be further promoted.


Asunto(s)
Aprendizaje Profundo , Ansiedad/prevención & control , Femenino , Procedimientos Quirúrgicos Ginecológicos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA