Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Biopharm ; 201: 114330, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795786

RESUMEN

The development of pharmaceutical formulations and the optimisation of drug synthesis are not possible without knowledge of thermodynamics. At the same time, the quantity and quality of the available data is not at a level that meets modern requirements. A convenient diagnostic approach is desirable to assess the quality of available experimental thermodynamic data of drugs. A comprehensive set of available data on phase transitions of profens family drugs was analysed using new complementary measurements and structure-property correlations. The consistent sets of solid-gas, liquid-gas and solid-liquid phase transitions were evaluated for twelve active pharmaceutical ingredients based on alkanoic acid derivatives and recommended for the calculations of the pharmaceutical processes. A "centerpiece approach" proposed in this work helped to perform the "health check" of the thermochemical data. The evaluated data on the sublimation enthalpies were used to derive the crystal lattice energies of the profens and to correlate the water solubilities with the sublimation vapour pressures and molecular parameters. A "paper-and-pen" approach proposed in this work can be extended to the diagnosis of "sick" or "healthy" thermodynamic data for drugs with a different structure than those studied in this work.


Asunto(s)
Química Farmacéutica , Termodinámica , Preparaciones Farmacéuticas/química , Química Farmacéutica/métodos , Transición de Fase , Solubilidad , Cristalización
2.
Chemphyschem ; 25(11): e202400066, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470129

RESUMEN

The thermodynamic data on ibuprofen available in the literature shows that the disarray of experimental results is unacceptable for this very important drug. The data on ibuprofens available in the literature were collected, combined with our complementary experimental results and evaluated. The enthalpies of combustion and formation of the crystalline RS-(±)- and S-(+)-ibuprofens were measured using high-precision combustion calorimetry. The temperature dependence of the vapour pressure of S-(+)-ibuprofen was measured using the transpiration method and the enthalpy of vaporization was derived from this measurement. The enthalpies of fusion of both compounds were measured using DSC. The G4 calculations have been carried out to determine the enthalpy of formation in the gaseous state of the most stable conformer. Thermochemical properties of the compounds studied were evaluated and tested for consistency with the "centerpiece approach". A set of reliable and consistent values of thermodynamic properties of ibuprofens at 298.15 K is recommended for thermochemical calculations of the pharmaceutical processes. The diagnostic protocol was developed to distinguish between the "sick" or "healthy" thermodynamic data. This diagnostic is also applicable to other drugs with a different structure than ibuprofen.


Asunto(s)
Ibuprofeno , Teoría Cuántica , Termodinámica , Ibuprofeno/química , Temperatura , Antiinflamatorios no Esteroideos/química
3.
Inorg Chem ; 61(28): 10743-10755, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35797430

RESUMEN

Volatile metal ß-diketonates are of interest from both practical and theoretical perspectives (manufacturing of film materials, catalysis, and the nature of metal-ligand bonding). Knowledge of their reliable thermochemical properties is essential for effective applications. However, there is an unacceptable scattering of the available data on the enthalpies of formation. In this work, we proposed "in vitro" and "in vivo" diagnostic tools to verify the available enthalpies of formation in both the crystalline and gaseous states for metal tris-ß-diketonates. The "in vitro" procedure involved high-level quantum-chemical calculations and was applied to define a consistent data set on the enthalpies of formation for iron(III) ß-diketonates. This data set has provided the basis for "in vivo" structure-property-based diagnostics to evaluate the robustness of the thermochemical data for ß-diketonate tris-complexes with metals other than iron.


Asunto(s)
Compuestos Férricos , Metales , Hierro , Ligandos , Compuestos Orgánicos , Termodinámica
4.
Chemistry ; 28(27): e202200080, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35293642

RESUMEN

The intramolecular hydrogen bond (intra-HB) is one of the best-known examples of non-covalent interactions in molecules. Among the different types of intramolecular hydrogen bonding, the NH⋅⋅⋅O hydrogen bond in amino-alcohols and amino-ethers is one of the weakest. In contrast to the strong OH⋅⋅⋅N intramolecular hydrogen bond, the strength of the NH⋅⋅⋅O bond can hardly be measured with conventional spectroscopic methods, even for simple amino-alcohols, since the band belonging to the NH⋅⋅⋅O conformer merges with the free OH band. In this work, we developed a combination of G4 calculations, and a method based on experimental vaporization enthalpies to determine the NH⋅⋅⋅O hydrogen bonding strength. The archetypal compounds for this study are 2-amino-1-ethanol and 3-amino-1-propanol as well as their respective methoxy analogs. Based on these molecules, different series were studied to investigate various factors influencing NH⋅⋅⋅O intra-HB strength. In the first series, the influence of alkylation near the hydroxy or methoxy group and the amino group in sterically hindered aminoalcohols was examined. In the second series, the influence of alkylation of the amino-group was investigated. In the third series, the effect of extending the alkyl chain between functional groups was studied.


Asunto(s)
Amino Alcoholes , Hidrógeno , Éteres , Hidrógeno/química , Enlace de Hidrógeno , Termodinámica
5.
Phys Chem Chem Phys ; 23(16): 9889-9899, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908514

RESUMEN

New data on the thermodynamic properties of the melting and sublimation of a series of volatile iridium(i) complexes [Ir(cod)(L)] with cyclooctadiene-1,5 (cod) and ß-diketones (L = RC(O)CHC(O)R') have been obtained with differential scanning calorimetry and vapor pressure measurements. Combining experimental, empirical and theoretical methods, ways to estimate difference in heat capacities between gas and crystal phases have been suggested. An effect on the volatility in introducing the simplest alkyl, fluorinated alkyl and aryl terminal groups (R and R') into the chelate ligand has been explained in terms of a detailed crystal packing analysis supported by a quantum chemical calculation of crystal lattice energies. To reveal the influence of the coordination center, the thermal behavior of complexes was compared with that for the tris-chelates, [Ir(L)3]. The study broadens our understanding of relationships between the structure and thermal properties of volatile precursors, which is useful for further tuning effective compounds for metal-organic chemical vapor deposition purposes.

6.
RSC Adv ; 10(63): 38158-38173, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517534

RESUMEN

Volatile metal ß-diketonates are well-known precursors used in Metal-Organic Chemical Vapour Deposition (MOCVD) for manufacturing film materials. Knowledge of vapour pressures and sublimation/vaporization thermodynamics of the MOCVD precursors is indispensable for optimization of deposition. However, the spread of available data could be unacceptably large for the same precursor for several reasons related to its chemical nature or incorrectly configured conditions of tensimetric investigation. In this work, we have developed an algorithm for a general diagnostic check, based on principles of group-additivity, for thermochemistry on solid-gas, liquid-gas, and solid-liquid phase transitions of metal-organic compounds and applied it to tris(beta-diketonato)iron complexes. The diagnostic tool helps to localize general "healthy" thermochemical interconnected data, and, subsequently, isolate molecules with definitely "ill" properties from the data pool. This diagnostic tool could be expanded and adapted for ß-diketonate complexes with metals other than iron.

7.
Chemosphere ; 161: 157-166, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27424058

RESUMEN

Temperature dependences of vapor pressures for 2-, 3-, and 4-bromobenzoic acid, as well as for five isomeric bromo-methylbenzoic acids were studied by the transpiration method. Melting temperatures and enthalpies of fusion for all isomeric bromo-methylbenzoic acids and 4-bromobenzoic acid were measured with a DSC. The molar enthalpies of sublimation and vaporization were derived. These data together with results available in the literature were collected and checked for internal consistency using a group-additivity procedure and results from X-ray structural diffraction studies. Specific (hydrogen bonding) interactions in the liquid and in the crystal phase of halogenbenzoic acids were quantified based on experimental values of vaporization and sublimation enthalpies. Structure-property correlations of solubilities of halogenobenzoic acids with sublimation pressures and sublimation enthalpies were developed and solubilities of bromo-benzoic acids were estimated. These new results resolve much of the ambiguity in the available thermochemical and solubility data on bromobenzoic acids. The approach based on structure property correlations can be applied for the assessment of water solubility of sparingly soluble drugs.

8.
J Pharm Sci ; 105(3): 1050-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26886302

RESUMEN

Benzoic acid is a model compound for drug substances in pharmaceutical research. Process design requires information about thermodynamic phase behavior of benzoic acid and its mixtures with water and organic solvents. This work addresses phase equilibria that determine stability and solubility. In this work, Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) was used to model the phase behavior of aqueous and organic solutions containing benzoic acid and chlorobenzoic acids. Absolute vapor pressures of benzoic acid and 2-, 3-, and 4-chlorobenzoic acid from literature and from our own measurements were used to determine pure-component PC-SAFT parameters. Two binary interaction parameters between water and/or benzoic acid were used to model vapor-liquid and liquid-liquid equilibria of water and/or benzoic acid between 280 and 413 K. The PC-SAFT parameters and 1 binary interaction parameter were used to model aqueous solubility of the chlorobenzoic acids. Additionally, solubility of benzoic acid in organic solvents was predicted without using binary parameters. All results showed that pure-component parameters for benzoic acid and for the chlorobenzoic acids allowed for satisfying modeling phase equilibria. The modeling approach established in this work is a further step to screen solubility and to predict the whole phase region of mixtures containing pharmaceuticals.


Asunto(s)
Ácido Benzoico/química , Clorobenzoatos/química , Compuestos Orgánicos/química , Agua/química , Estabilidad de Medicamentos , Solubilidad , Solventes/química , Termodinámica
9.
J Phys Chem B ; 118(49): 14479-92, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25383788

RESUMEN

Temperature dependence of vapor pressures for 12 dihalogen-substituted benzenes (halogen = F, Cl, Br, I) was studied by the transpiration method, and molar vaporization or sublimation enthalpies were derived. These data together with results available in the literature were collected and checked for internal consistency using structure-property correlations. Gas-phase enthalpies of formation of dihalogen-substituted benzenes were calculated by using quantum-chemical methods. Evaluated vaporization enthalpies in combination with gas-phase enthalpies of formation were used for estimation liquid-phase enthalpies of formation of dihalogen-substituted benzenes. Pairwise interactions of halogens on the benzene ring were derived and used for development of simple group additivity procedures for estimation of vaporization enthalpies, gas-phase, and liquid-phase enthalpies of formation of dihalogen-substituted benzenes.


Asunto(s)
Derivados del Benceno/química , Halógenos/química , Termodinámica , Química/instrumentación , Diseño de Equipo , Teoría Cuántica , Temperatura , Presión de Vapor , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA