Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 15: 1438144, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119073

RESUMEN

Introduction: Symptoms during the onset of major depressive disorder [MDD] and bipolar disorder type II [BD-II] are similar. The difference of hippocampus subregion could be a biological marker to distinguish MDD from BD-II. Methods: We recruited 61 drug-naïve patients with a first-episode MDD and BD-II episode and 30 healthy controls (HC) to participate in a magnetic resonance imaging [MRI] study. We built a general linear model (one-way analysis of covariance) with 22 hippocampal subfields and two total hippocampal volumes as dependent variables, and the diagnosis of MDD, BD-II, and HC as independent variables. We performed pair-wise comparisons of hippocampal subfield volumes between MDD and HC, BD-II and MDD, BD-II and HC with post hoc for primary analysis. Results: We identified three regions that differed significantly in size between patients and controls. The left hippocampal fissure, the hippocampal-amygdaloid transition area (HATA), and the right subiculum body were all significantly larger in patients with MDD compared with the HC. In the onset of first-episode of MDD, the hippocampal volume increased significantly, especially on the left side comparing to HC. However, we found differences between MDD and BD-II were not statistically significant. The volume of the left HATA and right subiculum body in BD-II was larger. Conclusions: The sample size of this study is relatively small, as it is a cross-sectional comparative study. In both MDD and BD-II groups, the volume of more left subregions appeared to increase. The left subregions were severely injured in the development of depressive disorder.

2.
Huan Jing Ke Xue ; 31(11): 2673-7, 2010 Nov.
Artículo en Chino | MEDLINE | ID: mdl-21250450

RESUMEN

Phenolic or aniline compounds were important pollutants in the industrial wastewaters to seriously polluted water environment. This research developed a detecting method of phenolic and aniline compounds based on the kinetic parameters of the substrates of laccase. Catalytic reaction between laccase and phenolic and aniline compounds was characterized using spectrophotometic method, which resulted 0-10 mg/L substrate reaction rate and calibration curve of substrate concentration and reaction rate. And then the non-volatile phenols in three kinds of coking wastewater were screened and the contents were detected. The result showed that polyhydric phenol, multi-amine and aminophenol were the main substrates of laccase. The optimum pH of phenols was around 7.0 and anilines 4.5-5.0, K(m) values of each substrates was 0.4-10 mmol/L. The calibration curve performed good first order kinetics linear relationship except benzidine with correlation coefficients above 0.96. Using laccase method, the contents of catechol in three kinds of coking wastewater were respectively detected to be 190.5, 265.8 and 155.3 mg/L with recoveries ranged from 89.9% to 115.8%.


Asunto(s)
Compuestos de Anilina/metabolismo , Catecoles/análisis , Lacasa/metabolismo , Fenoles/metabolismo , Contaminantes Químicos del Agua/análisis , Compuestos de Anilina/análisis , Catálisis , Catecoles/metabolismo , Monitoreo del Ambiente , Residuos Industriales/prevención & control , Cinética , Fenoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...