Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Sci (China) ; 125: 14-25, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36375900

RESUMEN

Simultaneous elimination of As(III) and Pb(II) from wastewater is still a great challenge. In this work, an iron-sulfur codoped biochar (Fe/S-BC) was successfully fabricated in a simplified way and was applied to the remediate the co-pollution of As(III) and Pb(II). The positive enthalpy indicated that the adsorption in As-Pb co-pollution was an endothermic reaction. The mechanism of As(III) removal could be illustrated by surface complexation, oxidation and precipitation. In addition to precipitation and complexation, the elimination mechanism of Pb(II) also contained ion exchange and electrostatic interactions. Competitive and synergistic effects existed simultaneously in the co-contamination system. The suppression of As(III) was ascribed to competitive complexation of the two metals on Fe/S-BC, while the synergy of Pb(II) was attributed to the formation of the PbFe2(AsO4)2(OH)2. Batch experiments revealed that Fe/S-BC had outstanding ability to remove As(III) and Pb(II), regardless of pH dependency and interference by various coexisting ions. The maximum adsorption capacities of the Fe/S-BC for As(III) and Pb(II) were 91.2 mg/g and 631.7 mg/g, respectively. Fe/S-BC could be treated as a novel candidate for the elimination of As(III)-Pb(II) combined pollution.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Adsorción , Plomo , Carbón Orgánico , Azufre , Cinética
2.
J Hazard Mater ; 422: 126949, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523474

RESUMEN

Sulfamethoxazole (SMX) is highly persistent and difficult to remove, making it urgent to find an efficient method for alleviating the enormous environmental pressure of SMX. In this study, sulfide-modified nanoscale zero-valent iron on carbon nanotubes (S-nZVI@CNTs) was prepared to activate peroxydisulfate (PDS) for the degradation of SMX. The results showed that SMX was completely removed within 40 min (kobs=0.1058 min-1) in the S-nZVI@CNTs/PDS system. By analyzing quenching experiments and electron paramagnetic resonance (EPR), singlet oxygen (1O2) was the main active species of the S-nZVI@CNTs/PDS system. 1O2 might be mediated by the abundant carbonyl groups (CO) on carbon nanotubes through spectroscopic analyses. In addition, sulfur doping transitioned the activation pathway to a nonradical pathway. Spectroscopic analyses and electrochemical experiments confirmed that the formation of CNTs-PDS complexes and S-nZVI could promote electron transfer on the catalyst surface. Furthermore, the main degradation intermediates of SMX were identified, and five possible transformation pathways were proposed. The S-nZVI@CNTs/PDS system possessed advantages including high anti-interference (Cl-, NO3-, HA), a strong applicability, recyclability and a low PDS consumption, offering new insight into the degradation of antibiotic wastewater.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Transporte de Electrón , Hierro , Sulfametoxazol , Sulfuros , Contaminantes Químicos del Agua/análisis
3.
Ecotoxicol Environ Saf ; 206: 111179, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32861964

RESUMEN

This study investigated the application of a specific soil washing method to remove Cu and Pb from contaminated agricultural soil. To develop an efficient leaching agent of heavy metal compounds for use in farmland soil, a mixed chelator (MC) was prepared using potassium fulvic acid (PFA, 3.2%) and citric acid (CIT, 0.16 M) in a volume ratio of 4:1 (PFA:CIT = 4:1); the optimal solid-liquid ratio (S/L = 1:20), initial pH value (4.51) and contact time (360 min) were also explored. Under optimal conditions, the removal efficiencies of MC for Cu and Pb were 42.92% and 50.46%, respectively, both of which performed better than PFA (27.86% of Cu and 17.91% of Pb) and CIT (42.04% of Cu and 41.46% of Pb). The effective states, bioavailability and relative mobilities of Cu and Pb in soil were also efficiently reduced by MC, which also increased the stability of these elements, thereby lowering the risk to soil health. More importantly, MC not only had little effect on the soil physicochemical properties (e.g., pH, organic matter (OM), cation exchange capacity (CEC), ammonium nitrogen (AN), available phosphorus (AP) and rapidly available potassium (AK)), but also improved the restored soil. Furthermore, soil structure, surface elements and the enzyme activity did not exhibit significantly loss. Therefore, MC has great potential for remediating agricultural soil.


Asunto(s)
Cobre/análisis , Restauración y Remediación Ambiental/métodos , Plomo/análisis , Contaminantes del Suelo/análisis , Benzopiranos/química , Disponibilidad Biológica , Quelantes/química , Ácido Cítrico/química , Contaminación Ambiental , Metales Pesados/análisis , Fósforo , Potasio , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...