Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Hazard Mater ; 479: 135637, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39208633

RESUMEN

While laccase humification has an efficient capacity to convert estrogenic pollutants, the roles of wheat (Triticum aestivum L.) root exudates (W-REs) in the enzymatic humification remain poorly understood. Herein, we presented the research into the effects of W-REs on 17ß-estradiol (E2) and bisphenol A (BPA) conversion in vitro laccase humification. W-REs inhibited E2 removal but promoted BPA conversion in the enzymatic humification, and the first-order kinetic constants for E2 and BPA were 0.27-0.69 and 0.28-0.55 h-1, respectively. Specialized small phenols and amino acids in W-REs were susceptible to laccase humification, resulting in increased copolymerization of estrogen and W-REs. In greenhouse hydroponics, the accumulated amounts of E2 (BPA) in the roots and shoots were estimated to be 0.87 (2.15) and 0.43 (0.51) nmol·plant-1 at day 3, respectively. By forming low- and eventually non-toxic copolymeric precipitates between estrogen and W-REs, laccase humification lowered the phytotoxicity and bioavailability of estrogen in the rhizosphere solution, consequently relieving its uptake, accumulation, and distribution in the wheat cells. This work sheds light on the roles of W-REs in regulating laccase-catalyzed estrogen humification, and gives an insight into the path of addressing organic contamination in the rhizosphere and ensuring food safety.

2.
Genes (Basel) ; 14(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37372320

RESUMEN

The tonoplast monosaccharide transporter (TMT) family plays essential roles in sugar transport and plant growth. However, there is limited knowledge about the evolutionary dynamics of this important gene family in important Gramineae crops and putative function of rice TMT genes under external stresses. Here, the gene structural characteristics, chromosomal location, evolutionary relationship, and expression patterns of TMT genes were analyzed at a genome-wide scale. We identified six, three, six, six, four, six, and four TMT genes, respectively, in Brachypodium distachyon (Bd), Hordeum vulgare (Hv), Oryza rufipogon (Or), Oryza sativa ssp. japonica (Os), Sorghum bicolor (Sb), Setaria italica (Si), and Zea mays (Zm). All TMT proteins were divided into three clades based on the phylogenetic tree, gene structures, and protein motifs. The transcriptome data and qRT-PCR experiments suggested that each clade members had different expression patterns in various tissues and multiple reproductive tissues. In addition, the microarray datasets of rice indicated that different rice subspecies responded differently to the same intensity of salt or heat stress. The Fst value results indicated that the TMT gene family in rice was under different selection pressures in the process of rice subspecies differentiation and later selection breeding. Our findings pave the way for further insights into the evolutionary patterns of the TMT gene family in the important Gramineae crops and provide important references for characterizing the functions of rice TMT genes.


Asunto(s)
Oryza , Oryza/metabolismo , Familia de Multigenes , Filogenia , Genes de Plantas , Proteínas de Transporte de Membrana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA