Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39185248

RESUMEN

Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.

2.
Heliyon ; 10(12): e32937, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39022016

RESUMEN

Food waste (FW) from large dining facility has been a pressing environmental challenge in China recently. This study developed an innovative species-specific feeding strategy for producing pigeon meat and excellent manure from FW. Adding FW to the feed of pigeons significantly increased their feed intake and promoted their growth although the pigeons showed a strong aversion to the FW. We produced a "super manure" with exceptionally high nitrogen (N) content (mean = 10.77 % on a dry basis, 8.04-12.57 %, n = 264) by feeding slowly-growing pigeon species (Columba livia vs. and Caoge Huzhou 11) with protein-high commercial feed and FW. A significant negative relationship between the N and carbon (C) contents in the pigeon manure was found, with C depletion higher than N depletion. Furthermore, the N content in the anaerobic composting (AnC) manure was 29.16 % higher than that in the FW. Fourier transform infrared (FT-IR) analysis and stable isotopes δ13C and δ15N in the manure clearly identified the transformations of nutrients during pigeon feeding and the AnC process. This study opens a path for producing N-high manure using protein-high food waste.

3.
Microbiol Resour Announc ; 13(8): e0019524, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39051775

RESUMEN

We report the complete genome of Priestia filamentosa H146 isolated from tobacco leaves. H146 contained a circular chromosome and five circular plasmids. A total of 4,669 genes were predicted, of which 4,372 genes were in the chromosome and other genes were located on plasmids. The genome sequence data provide an important basis for studying Priestia filamentosa.

4.
Ultrasonics ; 142: 107389, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38924960

RESUMEN

Acoustic radiation force (ARF) is widely used to induce shear waves for evaluating the mechanical properties of biological tissues. Two shear waves can be generated when exciting with ARF: a transverse shear wave, also simply called shear wave (SW), and a longitudinal shear wave (LSW). Shear waves (SWs) have been broadly used to assess the mechanical properties. Some articles have reported that the LSW can be used to evaluate mechanical properties locally. However, existing LSW studies are mainly focused on the group velocity evaluation using optical coherence tomography (OCT). Here, we report that a LSW generated with ARF can be used to probe viscoelastic properties, including shear modulus and viscosity, using ultrasound. We took advantage of the surface boundary effect to reflect the LSW, named RLSW, to address the energy deficiency of LSW induced by ARF. We systematically evaluated the experiments with tissue-mimicking viscoelastic phantoms and validated by numerical simulations. Phase velocity and dispersion comparison between the results induced by a RLSW and a SW exhibit good agreement in both the numerical simulations and experimental results. The Kelvin-Voigt (KV) model was used to determine the shear modulus and viscosity. RLSW shows great potential to evaluate localized viscoelastic properties, which could benefit various biomedical applications such as evaluating the viscoelasticity of heterogeneous materials or microscopic lesions of tissues.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Viscosidad , Diagnóstico por Imagen de Elasticidad/métodos , Módulo de Elasticidad , Elasticidad , Simulación por Computador
5.
Nat Commun ; 15(1): 4481, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802397

RESUMEN

Retinal degeneration, a leading cause of irreversible low vision and blindness globally, can be partially addressed by retina prostheses which stimulate remaining neurons in the retina. However, existing electrode-based treatments are invasive, posing substantial risks to patients and healthcare providers. Here, we introduce a completely noninvasive ultrasonic retina prosthesis, featuring a customized ultrasound two-dimensional array which allows for simultaneous imaging and stimulation. With synchronous three-dimensional imaging guidance and auto-alignment technology, ultrasonic retina prosthesis can generate programmed ultrasound waves to dynamically and precisely form arbitrary wave patterns on the retina. Neuron responses in the brain's visual center mirrored these patterns, evidencing successful artificial vision creation, which was further corroborated in behavior experiments. Quantitative analysis of the spatial-temporal resolution and field of view demonstrated advanced performance of ultrasonic retina prosthesis and elucidated the biophysical mechanism of retinal stimulation. As a noninvasive blindness prosthesis, ultrasonic retina prosthesis could lead to a more effective, widely acceptable treatment for blind patients. Its real-time imaging-guided stimulation strategy with a single ultrasound array, could also benefit ultrasound neurostimulation in other diseases.


Asunto(s)
Ceguera , Retina , Prótesis Visuales , Retina/diagnóstico por imagen , Retina/fisiología , Animales , Ceguera/terapia , Ceguera/fisiopatología , Degeneración Retiniana/terapia , Degeneración Retiniana/diagnóstico por imagen , Ondas Ultrasónicas , Humanos , Neuronas/fisiología , Ultrasonografía/métodos , Visión Ocular/fisiología
6.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38534234

RESUMEN

Ultrasound A-scan is an important tool for quantitative assessment of ocular lesions. However, its usability is limited by the difficulty of accurately localizing the ultrasound probe to a lesion of interest. In this study, a transparent LiNbO3 single crystal ultrasound transducer was fabricated, and integrated with a widefield fundus camera to guide the ultrasound local position. The electrical impedance, phase spectrum, pulse-echo performance, and optical transmission spectrum of the ultrasound transducer were validated. The novel fundus camera-guided ultrasound probe was tested for in vivo measurement of rat eyes. Anterior and posterior segments of the rat eye could be unambiguously differentiated with the fundus photography-guided ultrasound measurement. A model eye was also used to verify the imaging performance of the prototype device in the human eye. The prototype shows the potential of being used in the clinic to accurately measure the thickness and echogenicity of ocular lesions in vivo.


Asunto(s)
Angiografía con Fluoresceína , Ratas , Animales , Humanos , Angiografía con Fluoresceína/métodos , Ultrasonografía
7.
Sci Adv ; 10(12): eadk1278, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507481

RESUMEN

Studying placental functions is crucial for understanding pregnancy complications. However, imaging placenta is challenging due to its depth, volume, and motion distortions. In this study, we have developed an implantable placenta window in mice that enables high-resolution photoacoustic and fluorescence imaging of placental development throughout the pregnancy. The placenta window exhibits excellent transparency for light and sound. By combining the placenta window with ultrafast functional photoacoustic microscopy, we were able to investigate the placental development during the entire mouse pregnancy, providing unprecedented spatiotemporal details. Consequently, we examined the acute responses of the placenta to alcohol consumption and cardiac arrest, as well as chronic abnormalities in an inflammation model. We have also observed viral gene delivery at the single-cell level and chemical diffusion through the placenta by using fluorescence imaging. Our results demonstrate that intravital imaging through the placenta window can be a powerful tool for studying placenta functions and understanding the placental origins of adverse pregnancy outcomes.


Asunto(s)
Placenta , Placentación , Embarazo , Femenino , Ratones , Animales , Placenta/diagnóstico por imagen , Microscopía/métodos , Imagen Óptica , Microscopía Intravital
8.
Ultrasound ; 32(1): 28-35, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38314019

RESUMEN

Introduction: Point-of-care ultrasound is becoming increasingly popular, and we sought to examine its role in evaluating ocular and periocular structures and facial vasculature. With the large number of point-of-care ultrasound devices available, it is difficult to determine which devices may be best suited for ophthalmic and facial aesthetic applications. This study compares five popular handheld point-of-care ultrasound devices to help guide clinicians in choosing the device best suited for their needs. Methods: We compared five point-of-care ultrasound devices: Butterfly IQ+ (Butterfly, Burlington, MA), L15 (Clarius Mobile Health, Vancouver, British Columbia, Canada), L20 (Clarius Mobile Health, Vancouver, British Columbia, Canada), Lumify (Philips, Amsterdam, Netherlands) and Vscan Air (GE, Boston, MA). Three ophthalmologists obtained the following views on three volunteers: eight arteries, four ocular and periocular structures and areas of filler injections. The image quality of each view was graded on a four-point Likert-type scale. In addition, graders filled out a survey. The data were analysed using analysis of variance tests with the significance level set to p < 0.05. Results: In terms of overall image quality, the L20 received the highest mean rating, followed by the L15, Vscan Air, Butterfly IQ+ and the Lumify (p < 0.05). With further stratification for structure type, the L20 was ranked first for filler, artery and orbital imaging (p < 0.05). Conclusions: The L20 received the highest image quality rankings. While image quality is an important aspect of point-of-care ultrasound device selection, other factors such as cost, wireless capabilities, range of presets and battery life should also be considered.

9.
Bioengineering (Basel) ; 11(2)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38391660

RESUMEN

Functional ultrasound (fUS) flow imaging provides a non-invasive method for the in vivo study of cerebral blood flow and neural activity. This study used functional flow imaging to investigate rat brain's response to ultrasound and colored-light stimuli. Male Long-Evan rats were exposed to direct full-field strobe flashes light and ultrasound stimulation to their retinas, while brain activity was measured using high-frequency ultrasound imaging. Our study found that light stimuli, particularly blue light, elicited strong responses in the visual cortex and lateral geniculate nucleus (LGN), as evidenced by changes in cerebral blood volume (CBV). In contrast, ultrasound stimulation elicited responses undetectable with fUS flow imaging, although these were observable when directly measuring the brain's electrical signals. These findings suggest that fUS flow imaging can effectively differentiate neural responses to visual stimuli, with potential applications in understanding visual processing and developing new diagnostic tools.

10.
Sci Adv ; 10(6): eadk8426, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335289

RESUMEN

Acute liver failure (ALF) is a critical medical condition defined as the rapid development of hepatic dysfunction. Conventional ultrasound elastography cannot continuously monitor liver stiffness over the course of rapidly changing diseases for early detection due to the requirement of a handheld probe. In this study, we introduce wearable bioadhesive ultrasound elastography (BAUS-E), which can generate acoustic radiation force impulse (ARFI) to induce shear waves for the continuous monitoring of modulus changes. BAUS-E contains 128 channels with a compact design with only 24 mm in the azimuth direction for comfortable wearability. We further used BAUS-E to continuously monitor the stiffness of in vivo rat livers with ALF induced by d-galactosamine over 48 hours, and the stiffness change was observed within the first 6 hours. BAUS-E holds promise for clinical applications, particularly in patients after organ transplantation or postoperative care in the intensive care unit (ICU).


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Dispositivos Electrónicos Vestibles , Humanos , Ultrasonografía
11.
IEEE Trans Biomed Eng ; 71(3): 732-737, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37721876

RESUMEN

OBJECTIVE: Optical coherence elastography (OCE) was used to demonstrate the relationship between the elasticity of the optic nerve head (ONH) and different intraocular pressure (IOP) levels in an in-vivo rabbit model for the first time. METHOD: Both ex-vivo and in-vivo rabbit ONH were imaged using OCE system. A mechanical shaker initiated the propagation of elastic waves, and the elasticity of the ONH was determined by tracking the wave propagation speed. The elasticity of the ONH under varying IOP levels was reconstructed based on the wave speed. Notably, the ONH exhibited increased stiffness with elevated IOP. RESULTS: In the in-vivo rabbit models, the Young's modulus of ONH increased from 14 kPa to 81 kPa with the IOP increased from 15 mmHg to 35 mmHg. This revealed a positive correlation between the Young's modulus of the ONH and intraocular pressure. CONCLUSION: The OCE system proved effective in measuring the mechanical properties of ONH at different IOP levels, with validation in an in-vivo rabbit model. SIGNIFICANCE: Considering ONH plays a critical role in vision and eye diseases, the capability to image and quantify in vivo ONH biomechanical properties has great potential to advance vision science research and improve the clinical management of glaucoma patients.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Glaucoma , Disco Óptico , Animales , Humanos , Conejos , Disco Óptico/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Glaucoma/diagnóstico por imagen , Presión Intraocular , Tonometría Ocular , Tomografía de Coherencia Óptica/métodos
12.
Nat Photonics ; 17(1): 89-95, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38149029

RESUMEN

Optical-resolution photoacoustic microscopy (OR-PAM) can visualize wavelength-dependent optical absorption at the cellular level. However, OR-PAM suffers from a limited depth of field (DOF) due to the tight focus of the optical excitation beam, making it challenging to acquire high-resolution images of samples with uneven surfaces or high-quality volumetric images without z-scanning. To overcome this limitation, we propose needle-shaped beam photoacoustic microscopy (NB-PAM), which can extend the DOF to up to ~28-fold Rayleigh lengths via customized diffractive optical elements (DOEs). The DOE generate a needle beam with a well-maintained beam diameter, a uniform axial intensity distribution, and negligible sidelobes. The advantage of using NB-PAM is demonstrated by both histology-like imaging of fresh slide-free organs using a 266 nm laser and in vivo mouse brain vasculature imaging using a 532 nm laser. The approach provides new perspectives for slide-free intraoperative pathological imaging and in-vivo organ-level imaging.

13.
Nat Biomed Eng ; 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036618

RESUMEN

Techniques for imaging haemodynamics use ionizing radiation or contrast agents or are limited by imaging depth (within approximately 1 mm), complex and expensive data-acquisition systems, or low imaging speeds, system complexity or cost. Here we show that ultrafast volumetric photoacoustic imaging of haemodynamics in the human body at up to 1 kHz can be achieved using a single laser pulse and a single element functioning as 6,400 virtual detectors. The technique, which does not require recalibration for different objects or during long-term operation, enables the longitudinal volumetric imaging of haemodynamics in vasculature a few millimetres below the skin's surface. We demonstrate this technique in vessels in the feet of healthy human volunteers by capturing haemodynamic changes in response to vascular occlusion. Single-shot volumetric photoacoustic imaging using a single-element detector may facilitate the early detection and monitoring of peripheral vascular diseases and may be advantageous for use in biometrics and point-of-care testing.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37792653

RESUMEN

An ultrasound concave 2-D ring array transducer was designed for applications in visual stimulation of the retina with a long-term goal to restore vision in individuals with intact neurons but suffering blindness due to retinopathies. The array was synthesized and has a frequency of 20 MHz (0.075-mm wavelengths in water), 18-mm focal length (the curvature of the concave array), 1004 elements (with a pitch of 4.0 wavelengths), and inner and outer diameters of 9 and 14 mm, respectively. Wave patterns produced with the array at the focal distance were simulated. Results show that the wave patterns obtained can achieve a full-width-at-half-maximum (FWHM) resolution of 0.147 mm that is very close to the FWHM diffraction limit (0.136 mm). In addition, a scaled experiment at a lower frequency of 2.5 MHz was performed. The result is very close to those obtained with the simulations.


Asunto(s)
Retina , Transductores , Humanos , Diseño de Equipo , Ultrasonografía/métodos , Fantasmas de Imagen , Retina/diagnóstico por imagen
15.
Pharmaceutics ; 15(7)2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37514145

RESUMEN

Ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, have had a profound impact on millions of patients. In the past couple of decades, these diseases have been treated using conventional techniques but have also presented certain challenges and limitations that affect patient experience and outcomes. To address this, biomaterials have been used for ocular drug delivery, and a wide range of systems have been developed. This review will discuss some of the major classes and examples of biomaterials used for the treatment of prominent ocular diseases, including ocular implants (biodegradable and non-biodegradable), nanocarriers (hydrogels, liposomes, nanomicelles, DNA-inspired nanoparticles, and dendrimers), microneedles, and drug-loaded contact lenses. We will also discuss the advantages of these biomaterials over conventional approaches with support from the results of clinical trials that demonstrate their efficacy.

16.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1703-1713, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37276111

RESUMEN

Chronic leg ulcers are affecting approximately 6.5 million Americans, and they are associated with significant mortality, reduced quality of life, and high treatment costs. Since many chronic ulcers have underlying vascular insufficiency, accurate assessment of tissue perfusion is critical to treatment planning and monitoring. This study introduces a dual-scan photoacoustic (PA) tomography (PAT) system that can simultaneously image the dorsal and plantar sides of the foot to reduce imaging time. To account for the unique shape of the foot, the system employs height-adjustable and articulating baseball stages that can scan along the foot's contour. In vivo results from healthy volunteers demonstrate the system's ability to acquire clear images of foot vasculature, and results from patients indicate that the system can image patients with various ulcer conditions. We also investigated various PA features and examined their correlation with the foot condition. Our preliminary results indicate that vessel sharpness, occupancy, intensity, and density could all be used to assess tissue perfusion. This research demonstrated the potential of PAT for routine clinical tissue perfusion assessment.


Asunto(s)
Técnicas Fotoacústicas , Calidad de Vida , Humanos , Pie/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Técnicas Fotoacústicas/métodos
17.
Exp Biol Med (Maywood) ; 248(5): 371-379, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37212384

RESUMEN

Due to its accessibility and ability for real-time image acquisition of ocular structures, ultrasound has high utility in the visualization of the eye, especially in ocular oncology. In this minireview, we summarize the technical rationale and applications of ultrasound modalities, A-scan, B-scan, high-frequency ultrasound biomicroscopy (UBM), and Doppler measurement. A-scan ultrasound uses a transducer of 7-11 MHz, making it useful for determining the echogenicity of ocular tumors (7-8 MHz) and measuring the axial length of the eye (10-11 MHz). B-scan ultrasound operates at 10-20 MHz, which can be used for measuring posterior ocular tumors while UBM operates at 40-100 MHz to evaluate anterior ocular structures. Doppler ultrasonography allows for the detection of tumor vascularization. While ultrasonography has numerous clinical applications due to its favorable penetration compared with optical coherence tomography, it is still limited by its relatively lower resolution. Ultrasound also requires an experienced sonographer due to the need for accurate probe localization to areas of interest.


Asunto(s)
Oftalmopatías , Neoplasias , Humanos , Ojo/diagnóstico por imagen , Ultrasonografía , Oftalmopatías/diagnóstico por imagen , Tomografía de Coherencia Óptica
18.
Bioengineering (Basel) ; 10(5)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37237647

RESUMEN

The optic nerve is the second cranial nerve (CN II) that connects and transmits visual information between the retina and the brain. Severe damage to the optic nerve often leads to distorted vision, vision loss, and even blindness. Such damage can be caused by various types of degenerative diseases, such as glaucoma and traumatic optic neuropathy, and result in an impaired visual pathway. To date, researchers have not found a viable therapeutic method to restore the impaired visual pathway; however, in this paper, a newly synthesized model is proposed to bypass the damaged portion of the visual pathway and set up a direct connection between a stimulated visual input and the visual cortex (VC) using Low-frequency Ring-transducer Ultrasound Stimulation (LRUS). In this study, by utilizing and integrating various advanced ultrasonic and neurological technologies, the following advantages are achieved by the proposed LRUS model: 1. This is a non-invasive procedure that uses enhanced sound field intensity to overcome the loss of ultrasound signal due to the blockage of the skull. 2. The simulated visual signal generated by LRUS in the visual-cortex-elicited neuronal response in the visual cortex is comparable to light stimulation of the retina. The result was confirmed by a combination of real-time electrophysiology and fiber photometry. 3. VC showed a faster response rate under LRUS than light stimulation through the retina. These results suggest a potential non-invasive therapeutic method for restoring vision in optic-nerve-impaired patients using ultrasound stimulation (US).

19.
Nat Biomed Eng ; 7(10): 1321-1334, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37127710

RESUMEN

Serial assessment of the biomechanical properties of tissues can be used to aid the early detection and management of pathophysiological conditions, to track the evolution of lesions and to evaluate the progress of rehabilitation. However, current methods are invasive, can be used only for short-term measurements, or have insufficient penetration depth or spatial resolution. Here we describe a stretchable ultrasonic array for performing serial non-invasive elastographic measurements of tissues up to 4 cm beneath the skin at a spatial resolution of 0.5 mm. The array conforms to human skin and acoustically couples with it, allowing for accurate elastographic imaging, which we validated via magnetic resonance elastography. We used the device to map three-dimensional distributions of the Young's modulus of tissues ex vivo, to detect microstructural damage in the muscles of volunteers before the onset of soreness and to monitor the dynamic recovery process of muscle injuries during physiotherapies. The technology may facilitate the diagnosis and treatment of diseases affecting tissue biomechanics.

20.
Nat Commun ; 14(1): 2418, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105973

RESUMEN

The performance of ultrasonic transducers is largely determined by the piezoelectric properties and geometries of their active elements. Due to the brittle nature of piezoceramics, existing processing tools for piezoelectric elements only achieve simple geometries, including flat disks, cylinders, cubes and rings. While advances in additive manufacturing give rise to free-form fabrication of piezoceramics, the resultant transducers suffer from high porosity, weak piezoelectric responses, and limited geometrical flexibility. We introduce optimized piezoceramic printing and processing strategies to produce highly responsive piezoelectric microtransducers that operate at ultrasonic frequencies. The 3D printed dense piezoelectric elements achieve high piezoelectric coefficients and complex architectures. The resulting piezoelectric charge constant, d33, and coupling factor, kt, of the 3D printed piezoceramic reach 583 pC/N and 0.57, approaching the properties of pristine ceramics. The integrated printing of transducer packaging materials and 3D printed piezoceramics with microarchitectures create opportunities for miniaturized piezoelectric ultrasound transducers capable of acoustic focusing and localized cavitation within millimeter-sized channels, leading to miniaturized ultrasonic devices that enable a wide range of biomedical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...