Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 474
Filtrar
1.
Chem Commun (Camb) ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145417

RESUMEN

Pyridazine is a significant skeleton that widely exists in drugs and bioactive molecules. We herein describe expeditious approaches to access polysubstituted pyridazines from readily accessible unactivated ketones and acylhydrazones via Cu-promoted C(sp3)-C(sp3) coupling/cyclization sequences in a single-step fashion. Notably, the disparate 3,4,6-trisubstituted pyridazines and 3,5-disubstituted pyridazines could be obtained by tailoring the ketone's structure and reaction conditions. These transformations feature good functional group compatibility, excellent step-economy, and chemoselectivity. The potential synthetic utility of these conversions is illustrated by scale-up reactions and late-stage derivatizations of the as-prepared pyridazine products.

2.
RSC Med Chem ; 15(8): 2663-2676, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39149092

RESUMEN

There is significant value in developing multifunctional drug delivery systems with high therapeutic efficiency for diagnosing and treating tumors. In this study, we synthesized the ATP-triggered and pH-sensitive material ZIF-90 using the liquid-phase diffusion method. This was done to load 10-hydroxycamptothecin (HCPT), and the FA-PEG-NH2 conjugate was synthesized through an amidation reaction. We further modified the HCPT@ZIF-90 nanocomposite by employing the Schiff base reaction to create the HCPT@ZIF-90-PEG-FA nanomaterial. Drug loading test results revealed a high HCPT drug loading of up to 22.3% by weight. In the drug release experiment, the cumulative drug release of HCPT@ZIF-90 nanomaterials in pH 5.4 and ATP solutions was the highest after 72 hours. The active targeted delivery of FA and the dual-responsive release of HCPT by ZIF-90 significantly enhanced the therapeutic effect of HCPT@ZIF-90-PEG-FA on human colon cancer cells (HCT116). In the cytotoxicity test, when 100 µg mL-1 of HCPT@ZIF-90-PEG-FA was incubated with cells, the cell survival rate was 16.61 ± 1.19%, significantly lower than that of the other experimental groups. This result indicates that HCPT@ZIF-90-PEG-FA exhibits excellent anti-tumor activity. Cell cycle experiments have shown that HCPT@ZIF-90-PEG-FA may inhibit the proliferation of cancer cells by blocking DNA synthesis and halting cell cycle progression. Cell uptake experiments showed that HCPT@ZIF-90-PEG-FA was mainly present in the cytoplasm of HCT1116 cells, indicating successful cellular entry of the drug to exert its therapeutic effect. In vivo experiments also demonstrated that HCPT@ZIF-90-PEG-FA nanomaterials can effectively eradicate HCT116 tumors. The utilization of the nano-drug carrier ZIF-90, along with the modification with PEG-FA, notably improved the therapeutic efficacy of HCPT. These results suggest that the system, with its active targeted delivery of FA and dual-responsive release of HCPT, could present a novel strategy for treating human colorectal cancer.

3.
J Palliat Med ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112021

RESUMEN

Background: Despite physical and emotional distress in patients with gynecologic malignancies, palliative care (PC) is underutilized. Objectives: We characterize referral practices, symptom burden and functional status at the time of initial PC encounter for patients with gynecologic cancer. Design: Data were extracted from the standardized Quality Data Collection Tool for Palliative Care (QDACT-PC). We describe symptom burden and performance status. Results: At initial specialty PC encounter, patients with gynecologic cancers reported a mean of 3.3 moderate/severe symptoms. Outpatients experienced the most moderate/severe symptoms (mean 3.9) versus inpatient (mean 2.1) or home (mean 1.5). A total of 72.7% of patients had significantly impaired functional status (palliative performance scale [PPS] <70) at initial encounter. Inpatients had a more impaired functional status (mean PPS 48.8) than outpatients (mean PPS 67.0). Conclusions: The symptom burden for gynecologic cancer patients at initial PC encounter is high. Despite better functional status, patients referred in the outpatient setting had the highest symptom burden.

4.
Signal Transduct Target Ther ; 9(1): 207, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39128897

RESUMEN

Derived from enteroendocrine cells (EECs), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) are pivotal incretin hormones crucial for blood glucose regulation. Medications of GLP-1 analogs and GLP-1 receptor activators are extensively used in the treatment of type 2 diabetes (T2D) and obesity. However, there are currently no agents to stimulate endogenous incretin secretion. Here, we find the pivotal role of KCNH2 potassium channels in the regulation of incretin secretion. Co-localization of KCNH2 with incretin-secreting EECs in the intestinal epithelium of rodents highlights its significance. Gut epithelial cell-specific KCNH2 knockout in mice improves glucose tolerance and increases oral glucose-triggered GLP-1 and GIP secretion, particularly GIP. Furthermore, KCNH2-deficient primary intestinal epithelial cells exhibit heightened incretin, especially GIP secretion upon nutrient stimulation. Mechanistically, KCNH2 knockdown in EECs leads to reduced K+ currents, prolonged action potential duration, and elevated intracellular calcium levels. Finally, we found that dofetilide, a KCNH2-specific inhibitor, could promote incretin secretion in enteroendocrine STC-1 cells in vitro and in hyperglycemic mice in vivo. These findings elucidate, for the first time, the mechanism and application of KCNH2 in regulating incretin secretion by EECs. Given the therapeutic promise of GLP-1 and GIP in diabetes and obesity management, this study advances our understanding of incretin regulation, paving the way for potential incretin secretagogue therapies in the treatment of diabetes and obesity.


Asunto(s)
Células Enteroendocrinas , Péptido 1 Similar al Glucagón , Incretinas , Animales , Ratones , Incretinas/farmacología , Células Enteroendocrinas/metabolismo , Células Enteroendocrinas/efectos de los fármacos , Péptido 1 Similar al Glucagón/genética , Péptido 1 Similar al Glucagón/metabolismo , Humanos , Polipéptido Inhibidor Gástrico/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/patología , Secretagogos/farmacología , Ratones Noqueados , Canal de Potasio ERG1
5.
Neuropharmacology ; 260: 110129, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39179173

RESUMEN

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.

6.
Huan Jing Ke Xue ; 45(8): 4894-4903, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168705

RESUMEN

Maize-soybean compound intercropping has the potential to increase yield and is being tested for spreading in Huang-Huai-hai Plain. However, the main regulatory regions of this cropping pattern on soil microbial communities have not been clarified. In the present study, the tested samples were collected from three maize root zones of bulk soil, rhizosphere soil, and roots under mono- and intercropping planting modes, respectively. The non-rhizosphere soil chemical properties and enzyme activities were determined, and bacterial communities were characterized using high-throughput sequencing of the 16S rRNA gene V3-V4 region. Compared with monocropping, the maize bulk soil electric conductivity (EC), soil organic matter (SOM), available potassium (AK), available phosphorus (AP), total nitrogen (TN), and enzyme activities of intercropping were significantly increased. The α diversities and ß diversity of the bacterial community in rhizosphere soil were significantly different between the two planting modes. There were 11 bacteria genera with significantly higher abundance in the rhizosphere soil of compound planting than that of monoculture, and TN, AP, and catalase were the three most important factors contributing to their distribution. The abundances of 8 genera among the 11 genera mentioned above, unclassified Vicinamibacterales, unclassified Geminicoccaceae, MND1, unclassified Gemmatimonadaceae, Acidibacter, unclassified Vicinamibacteraceae, Sphingomonas, and unclassified Comamonadaceae were significantly positively correlated with TN. As for the bacteria distribution in maize root, AK contributed the most and had a significantly negative correlation with unclassified Rhizobiaceae and unclassified Microscillaceae and a positive correlation with Haliangium. Maize-soybean compound intercropping affected mainly the bacterial community of maize rhizosphere and had an evident effect on soil fertilizer cultivation and microbial diversity regulation, which provides a theoretical basis and practical guidance for rational intercropping to maintain agroecosystem biodiversity.


Asunto(s)
Agricultura , Bacterias , Glycine max , Raíces de Plantas , Rizosfera , Microbiología del Suelo , Zea mays , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Agricultura/métodos , ARN Ribosómico 16S/genética , Microbiota , Suelo/química , Producción de Cultivos/métodos
7.
Comput Struct Biotechnol J ; 23: 2606-2614, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39006920

RESUMEN

Cathepsin L (CTSL) is a promising therapeutic target for metabolic disorders. Current pharmacological interventions targeting CTSL have demonstrated potential in reducing body weight gain, serum insulin levels, and improving glucose tolerance. However, the clinical application of CTSL inhibitors remains limited. In this study, we used a combination of artificial intelligence and experimental methods to identify new CTSL inhibitors from natural products. Through a robust deep learning model and molecular docking, we screened 150 molecules from natural products for experimental validation. At a concentration of 100 µM, we found that 36 of them exhibited more than 50 % inhibition of CTSL. Notably, 13 molecules displayed over 90 % inhibition and exhibiting concentration-dependent effects. The molecular dynamics simulation on the two most potent inhibitors, Plumbagin and Beta-Lapachone, demonstrated stable interaction at the CTSL active site. Enzyme kinetics studies have shown that these inhibitors exert an uncompetitive inhibitory effect on CTSL. In conclusion, our research identifies Plumbagin and Beta-Lapachone as potential CTSL inhibitors, offering promising candidates for the treatment of metabolic disorders and illustrating the effectiveness of artificial intelligence in drug discovery.

8.
Nanoscale ; 16(29): 14081-14088, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39004999

RESUMEN

Doping heterometal atoms into ligand-protected gold superatom nanoclusters (Aun NCs) is proposed to further diversify their geometrical and electronic structures and enhance their photoluminescence properties, which is attributed to the mixing and effects between atoms. However, the fundamental principles that govern the optoelectronic properties of the doped Aun NCs remain elusive. Herein, we systematically explored two prototypical 8-electron Aun (n = 11 and 13) NCs with and without Ir dopant atoms using comprehensive ab initio calculations and real-time nonadiabatic molecular dynamics simulations. These doped Aun NCs maintain their parent geometrical structures and 8-electron superatomic configuration (1S21P6). Strong core-shell (Ir-Aun) electronic coupling significantly expands the energy gap, resulting in a weak nonadiabatic coupling matrix element, which in turn increases the carrier lifetime. This increase is mainly governed by the low-frequency vibration mode. We uncovered the relationship between electronic structures, electron-vibration, and carrier dynamics for these doped Aun NCs. These calculated results provide crucial insights for the atomically precise design of metal NCs with superior optoelectronic properties.

9.
Genes (Basel) ; 15(7)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39062672

RESUMEN

In the present study, the mitochondrial genomic characteristics of Acanthopsetta nadeshnyi have been reported and have depicted the phylogenetic relationship among Pleuronectidae. Combined with a comparative analysis of 13 PCGs, the TN93 model was used to review the neutral evolution and habitat evolution catalysis of the mitogenome to verify the distancing and purification selectivity of the mitogenome in Pleuronectidae. At the same time, a species differentiation and classification model based on mitogenome analysis data was established. This study is expected to provide a new perspective on the phylogenetic relationship and taxonomic status of A. nadeshnyi and lay a foundation for further exploration of environmental and biological evolutionary mechanisms.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial , Filogenia , Animales , Peces Planos/genética , Peces Planos/clasificación
10.
J Phys Chem Lett ; 15(29): 7502-7508, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39018236

RESUMEN

Semiconductor magic-size clusters (MSCs), lying in the local minima of the potential landscape, are important intermediates that emerge during the synthesis of colloidal quantum dots. They have definite geometrical and electronic structures, thus serving as atomically precise building blocks for assembling supramolecular structures and devices with unprecedented functionalities. Here we report the intrinsic chiroptical activity in the magic-size cadmium and zinc chalcogenide clusters with magic numbers of 13, 33, and 34 possessing unique core-shell structures. They are responsive to circularly polarized light from the ultraviolet to visible region, with size-tunable energy gap, absorption wavelength, and excitonic characteristics. The origin of the chiroptical activity and the evolution of excitonic states with magic size are disclosed by time-dependent density functional theory calculations within a correlated electron-hole picture. This molecular-level understanding of the photophysical properties of group II-VI MSCs provides essential guidelines for utilizing them for chiral optoelectronics and photonics.

11.
Int Immunopharmacol ; 140: 112784, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39083928

RESUMEN

Vascular remodeling is a dynamic process involving cellular and molecular changes, including cell proliferation, migration, apoptosis and extracellular matrix (ECM) synthesis or degradation, which disrupt the homeostasis of endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). Cigarette smoke exposure (CSE) is thought to promote vascular remodeling, but the components are complex and the mechanisms are unclear. In this review, we overview the progression of major components of cigarette smoke (CS), such as nicotine and acrolein, involved in vascular remodeling in terms of ECs injury, VSMCs proliferation, migration, apoptosis, and ECM disruption. The aim was to elucidate the effects of different components of CS on different cells of the vascular system, to discover the relevance of their actions, and to provide new references for future studies.

12.
J Phys Chem Lett ; 15(30): 7708-7715, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39041828

RESUMEN

Photocatalytic N2 fixation offers promise for ammonia synthesis, yet traditional photocatalysts encounter challenges such as low efficiency and short carrier lifetimes. Atomically precise ligand-metal nanoclusters emerge as a solution to address these issues, but the photophysical mechanism remains elusive. Inspired by the synthesis of Au4Ru2 NCs, we investigate the mechanism behind N2 activation on Au4Ru2, focusing on photoactivity and carrier dynamics. Our results reveal that vibration of the Ru-N bond in the low-frequency domain suppresses the deactivation process leading to a long lifetime of the excited N2. By the strategy of isoelectronic substitution, we identify the single Ru sites as the active sites for N2 activation. Furthermore, these ligand-protected M4Ru2 (M = Au, Ag, Cu) NCs show robust thermal stability in explicit solvation and decent photochemical activity for N2 activation and NH3 production. These findings have significant implications for the optimization of catalysts for sustainable ammonia synthesis.

13.
Int J Ophthalmol ; 17(6): 1018-1027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895677

RESUMEN

AIM: To explore the effect of epidermal growth factor receptor (EGFR) inhibition by erlotinib and EGFR siRNA on epidermal growth factor (EGF)-induced activation of retinal pigment epithelium (RPE) cells. METHODS: Human RPE cell line (ARPE-19 cells) was activated by 100 ng/mL EGF. Erlotinib and EGFR siRNA were used to intervene EGF treatment. Cellular viability, proliferation, and migration were detected by methyl thiazolyl tetrazolium (MTT) assay, bromodeoxyuridine (BrdU) staining assay and wound healing assay, respectively. EGFR/protein kinase B (AKT) pathway proteins and N-cadherin, α-smooth muscle actin (α-SMA), and vimentin were tested by Western blot assay. EGFR was also determined by immunofluorescence staining. RESULTS: EGF treatment for 24h induced a significant increase of ARPE-19 cells' viability, proliferation and migration, phosphorylation of EGFR/AKT proteins, and decreased total EGFR expression. Erlotinib suppressed ARPE-19 cells' viability, proliferation and migration through down regulating total EGFR and AKT protein expressions. Erlotinib also inhibited EGF-induced an increase of proliferative and migrative ability in ARPE-19 cells and clearly suppressed EGF-induced EGFR/AKT proteins phosphorylation and decreased expression of N-cadherin, α-SMA, and vimentin proteins. Similarly, EGFR inhibition by EGFR siRNA significantly affected EGF-induced an increase of cell proliferation, viability, and migration, phosphorylation of EGFR/AKT proteins, and up-regulation of N-cadherin, α-SMA, and vimentin proteins. CONCLUSION: Erlotinib and EGFR-knockdown suppress EGF-induced cell viability, proliferation, and migration via EGFR/AKT pathway in RPE cells. EGFR inhibition may be a possible therapeutic approach for proliferative vitreoretinopathy (PVR).

14.
Philos Trans R Soc Lond B Biol Sci ; 379(1906): 20230240, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38853555

RESUMEN

Synaptic plasticity is a key cellular model for learning, memory and chronic pain. Most previous studies were carried out in rats and mice, and less is known about synaptic plasticity in non-human primates. In the present study, we used integrative experimental approaches to study long-term potentiation (LTP) in the anterior cingulate cortex (ACC) of adult tree shrews. We found that glutamate is the major excitatory transmitter and α-amino-3-hydroxy-5-methyl-4-isoxazole-propionicacid (AMPA) receptors mediate postsynaptic responses. LTP in tree shrews was greater than that in adult mice and lasted for at least 5 h. N-methyl-d-aspartic acid (NMDA) receptors, Ca2+ influx and adenylyl cyclase 1 (AC1) contributed to tree shrew LTP. Our results suggest that LTP is a major form of synaptic plasticity in the ACC of primate-like animals. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.


Asunto(s)
Giro del Cíngulo , Potenciación a Largo Plazo , Receptores AMPA , Receptores de N-Metil-D-Aspartato , Tupaiidae , Animales , Potenciación a Largo Plazo/fisiología , Giro del Cíngulo/fisiología , Tupaiidae/fisiología , Ratones , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo , Adenilil Ciclasas/metabolismo , Ácido Glutámico/metabolismo , Masculino
15.
J Chem Phys ; 160(23)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38884409

RESUMEN

The oxygen reduction reaction (ORR), a pivotal process in hydrogen fuel cells crucial for enhancing fuel cell performance through suitable catalysts, remains a challenging aspect of development. This study explores the catalytic potential of germanene on Al (111), taking advantage of the successful preparation of stable reconstructed germanene layers on Al (111) and the excellent catalytic performance exhibited by germanium-based nanomaterials. Through first-principles calculations, we demonstrate that the O2 molecule can be effectively activated on both freestanding and supported germanene nanosheets, featuring kinetic barriers of 0.40 and 0.04 eV, respectively. The presence of the Al substrate not only significantly enhances the stability of the reconstructed germanene but also preserves its exceptional ORR catalytic performance. These theoretical findings offer crucial insights into the substrate-mediated modulation of germanene stability and catalytic efficiency, paving the way for the design of stable and efficient ORR catalysts for future applications.

16.
BMJ Open ; 14(6): e078687, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858136

RESUMEN

OBJECTIVES: This study aims to investigate the diagnostic value of heparin-binding protein (HBP) in sepsis and develop a sepsis diagnostic model incorporating HBP with key biomarkers and disease-related scores for rapid, and accurate diagnosis of sepsis in the intensive care unit (ICU). DESIGN: Clinical retrospective cross-sectional study. SETTING: A comprehensive teaching tertiary hospital in China. PARTICIPANTS: Adult patients (aged ≥18 years) who underwent HBP testing or whose blood samples were collected when admitted to the ICU. MAIN OUTCOME MEASURES: HBP, C reactive protein (CRP), procalcitonin (PCT), white blood cell count (WBC), interleukin-6 (IL-6), lactate (LAC), Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) score were recorded. RESULTS: Between March 2019 and December 2021, 326 patients were enrolled in this study. The patients were categorised into a non-infection group (control group), infection group, sepsis group and septic shock group based on the final diagnosis. The HBP levels in the sepsis group and septic shock group were 45.7 and 69.0 ng/mL, respectively, which were significantly higher than those in the control group (18.0 ng/mL) and infection group (24.0 ng/mL) (p<0.001). The area under the curve (AUC) value of HBP for diagnosing sepsis was 0.733, which was lower than those corresponding to PCT, CRP and SOFA but higher than those of IL-6, LAC and APACHE II. Multivariate logistic regression analysis identified HBP, PCT, CRP, IL-6 and SOFA as valuable indicators for diagnosing sepsis. A sepsis diagnostic model was constructed based on these indicators, with an AUC of 0.901, a sensitivity of 79.7% and a specificity of 86.9%. CONCLUSIONS: HBP could serve as a biomarker for the diagnosis of sepsis in the ICU. Compared with single indicators, the sepsis diagnostic model constructed using HBP, PCT, CRP, IL-6 and SOFA further enhanced the diagnostic performance of sepsis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos , Biomarcadores , Proteínas Sanguíneas , Proteína C-Reactiva , Unidades de Cuidados Intensivos , Puntuaciones en la Disfunción de Órganos , Sepsis , Humanos , Estudios Retrospectivos , Estudios Transversales , Femenino , Masculino , Biomarcadores/sangre , Persona de Mediana Edad , Sepsis/diagnóstico , Sepsis/sangre , China , Anciano , Proteínas Sanguíneas/análisis , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Péptidos Catiónicos Antimicrobianos/sangre , Polipéptido alfa Relacionado con Calcitonina/sangre , APACHE , Interleucina-6/sangre , Adulto , Curva ROC , Ácido Láctico/sangre
17.
J Chem Phys ; 160(23)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38899686

RESUMEN

Endohedrally doped clusters form a large category of cage clusters, with unique structures, diverse elemental compositions, and highly tunable electronic structures and physisochemical properties. They have been widely achieved in laboratory and may serve as functional building blocks for assembling new supermolecular structures and devices. In this paper, for the first time, we disclosed the luminescence properties of endohedrally doped group-IV clusters by time-dependent density functional theory calculations. A total of 64 cage clusters have been explored in terms of stability, emission wavelength, and the energy difference between the first excited singlet and triplet states. The key geometric and electronic factors governing the photophysical properties of these cage clusters were unveiled, to provide crucial insights for crafting atomically precise nanoclusters for optical and optoelectronic applications.

18.
Dig Liver Dis ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38744556

RESUMEN

OBJECTIVE: The primary purpose of the study was to explore the clinical efficacy of the novel snare assisted endoscopic resection of extraluminal growing gastric gastrointestinal stromal tumors (gastric GISTs) using external traction, and the secondary purpose was to compare the novel snare assisted endoscopic resection of extraluminal GISTs with the standard laparoscopic procedure. METHODS: We retrospectively analyzed the patients who underwent novel external traction assisted endoscopic resection or laparoscopic resection for their extraluminal gastric GIST ≤5 cm in diameter. RESULTS: A total of 111 patients (27 in the endoscopic group and 84 in the laparoscopic group) were included in this study. There was no significant difference in tumor diameter and complication rate between the two groups. The overall procedure time was slightly higher in the endoscopic group compared to the laparoscopic group (P = 0.034). However, postoperative hospitalization time (P < 0.001) and postoperative fasting time (P = 0.005) were shorter in the endoscopic group compared to the laparoscopic group. CONCLUSION: Snare external traction-assisted endoscopic resection of extraluminal growing gastric GISTs is safe and effective, and it provides a new adjunctive method for endoscopic resection of GIST.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38722344

RESUMEN

Previous research has demonstrated that Dexmedetomidine (DEX), an α2 adrenergic agonist commonly used for its sedative and analgesic properties, can attenuate lipopolysaccharide (LPS)-induced acute kidney injury (AKI). This study explores the possibility that DEX's protective effects in LPS-induced AKI are mediated through the inhibition of ferroptosis, a form of regulated cell death characterized by iron-dependent lipid peroxidation, and the activation of the antioxidant response through the Keap1/Nrf2/HO-1 signaling pathway. We induced AKI in 42 mice using LPS and divided them into six groups: saline control, LPS, LPS + DEX, LPS + Ferrostatin-1 (LPS + Fer-1; a ferroptosis inhibitor), LPS + DEX with α2-receptor antagonist Altipamizole (LPS + DEX + ATI), and LPS + DEX with Nrf2 inhibitor ML385 (LPS + DEX + ML385). After 24 h, we analyzed blood and kidney tissues. LPS exposure resulted in AKI, with increased serum creatinine, BUN, and cystatin C, and tubular damage, which DEX and Fer-1 ameliorated. However, Altipamizole and ML385 negated these improvements. The LPS group exhibited elevated oxidative stress markers and mitochondrial damage, reduced by DEX and Fer-1, but not when α2-adrenergic or Nrf2 pathways were blocked. Nrf2 and HO-1 expression declined in the LPS group, rebounded with LPS + DEX and LPS + Fer-1, and fell again with inhibitors; inversely, Keap1 expression varied. Our results demonstrate that DEX may protect against LPS-induced AKI, at least partially by regulating ferroptosis and the α2-adrenergic receptor/Keap1/Nrf2/HO-1 pathway, suggesting a potential therapeutic role for DEX in AKI management by modulating cell death and antioxidant defenses.

20.
Int J Ophthalmol ; 17(5): 806-814, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766346

RESUMEN

AIM: To explore the effects of hepatocyte growth factor (HGF) on retinal pigment epithelium (RPE) cell behaviors. METHODS: The human adult retinal pigment epithelial cell line-19 (ARPE-19) were treated by HGF or mesenchymal-epithelial transition factor (MET) inhibitor SU11274 in vitro. Cell viability was detected by a Cell Counting Kit-8 assay. Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay, respectively. The expression levels of MET, phosphorylated MET, protein kinase B (AKT), and phosphorylated AKT proteins were determined by Western blot assay. The MET and phosphorylated MET proteins were also determined by immunofluorescence assay. RESULTS: HGF increased ARPE-19 cells' viability, proliferation and migration, and induced an increase of phosphorylated MET and phosphorylated AKT proteins. SU11274 significantly reduced cell viability, proliferation, and migration and decreased the expression of MET and AKT proteins. SU11274 suppressed HGF-induced increase of viability, proliferation, and migration in ARPE-19 cells. Additionally, SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins. CONCLUSION: HGF enhances cellular viability, proliferation, and migration in RPE cells through the MET/AKT signaling pathway, whereas this enhancement is suppressed by the MET inhibitor SU11274. HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...