Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(9)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37177602

RESUMEN

This paper presents a novel method for the dynamic positioning of an unmanned underwater vehicle (UUV) with unknown trajectories based on an autonomous tracking buoy (PUVV-ATB) that indirectly positions the UUV using ultra-short baseline measurements. The method employs a spatial location geometric model and divides the positioning process into four steps, including data preprocessing to detect geometric errors and apply mean filtering, direction capture, position tracking, and position synchronization. To achieve these steps, a new adaptive tracking control algorithm is proposed that does not require trajectory prediction and is applied to the last three steps. The algorithm is deployed to the buoy for tracking simulation and sea trial experiments, and the results are compared with those of a model predictive control algorithm. The autonomous tracking buoy based on the adaptive tracking control algorithm runs more stably and can better complete the precise tracking task for the UUV with a positioning error of less than 10 cm. This method breaks the premise of trajectory prediction based on traditional tracking control algorithms, providing a new direction for further research on UUV localization. Furthermore, the conclusion of this paper has important reference value for other research and application fields related to UUV.

2.
J Theor Biol ; 558: 111358, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36410449

RESUMEN

The mechanical properties of limb long bones are impacted by bone shape and especially curvature, which is therefore likely to be of adaptive value. We use finite element analysis to compare the mechanical properties of humeri of the closely related American otter and honey badger under external loads, and to analyze the significance of bone curvature. We simulate the effects generated by loads applied in directions that differ relative to the humeral longitudinal axes, and then compare the stress characteristics with a series of humerus-inspired abstracted curved structures with increasing ratio (C/R) of eccentricity C to radius of cross section R. The humeri of the two species differ in bone curvature, with C/R of 0.6201 and 0.8752, respectively. Our analysis shows that the peak and mean stress values found within the sampling line of bone models reach a minimum when the directions of loads are 105 ± 5°, and the humerus of the American otter always experienced lower stress values than those of the honey badger in the sampling line. An analysis of stress distribution in abstract curved structures showed the greatest reduction in stress when the direction of external load was equal or greater than 95°. This suggests that the variability of the direction of external loads is an important determinant of bone curvature, and should be accounted for when assessing load carrying capacity. This study provides a basis for biomechanics research and yields insight into the form-function relationship of nature's structural elements within limbs. It potentially contributes to the design of biomimetic robots while also highlighting the functional significance of humeral bone curvature in mammals.


Asunto(s)
Miel , Nutrias , Animales , Húmero , Análisis de Elementos Finitos , Fenómenos Biomecánicos , Estrés Mecánico
3.
ISA Trans ; 136: 46-60, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36428111

RESUMEN

In this paper, the consensus tracking problem for the linear and nonlinear partial difference multi-agent systems with switching communication topology and control delay is investigated. Based on relative local measurements of neighboring followers, while considering spatio-temporal discretization and initial state deviation, a discrete distributed consensus protocol with initial value learning is designed for each agent via D-type iterative learning approach. Through rigorous mathematical theoretical analysis, the necessary and sufficient conditions are obtained. Under the switching of the communication topology, these conditions ensure that the consensus tracking control of the MASs can be solved. After applying the designed protocol, in the sense of the L2 norm and along the positive direction of the iteration axis, the consensus tracking error between any two agents can converge to zero. Finally, some simulation examples are used to demonstrate the validity of the protocol and theoretical results.

4.
PLoS One ; 14(4): e0214510, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30995252

RESUMEN

There is considerable debate regarding whether mandibular morphology in ungulates primarily reflects phylogenetic affinities or adaptation to specific diet. In an effort to help resolve this debate, we use three-dimensional finite element analysis (FEA) to assess the biomechanical performance of mandibles in eleven ungulate taxa with well-established but distinct dietary preferences. We found notable differences in the magnitude and the distribution of von Mises stress between Artiodactyla and Perissodactyla, with the latter displaying lower overall stress values. Additionally, within the order Artiodactyla the suborders Ruminantia and Tylopoda showed further distinctive stress patterns. Our data suggest that a strong phylogenetic signal can be detected in biomechanical performance of the ungulate mandible. In general, Perissodactyla have stiffer mandibles than Artiodactyla. This difference is more evident between Perissodactyla and ruminant species. Perissodactyla likely rely more heavily on thoroughly chewing their food upon initial ingestion, which demands higher bite forces and greater stress resistance, while ruminants shift comminution to a later state (rumination) where less mechanical effort is required by the jaw to obtain sufficient disintegration. We therefore suggest that ruminants can afford to chew sloppily regardless of ingesta, while hindgut fermenters cannot. Additionally, our data support a secondary degree of adaptation towards specific diet. We find that mandibular morphologies reflect the masticatory demands of specific ingesta within the orders Artiodactyla and Perissodactyla. Of particular note, stress patterns in the white rhinoceros (C. simum) look more like those of a general grazer than like other rhinoceros' taxa. Similarly, the camelids (Tylopoda) appear to occupy an intermediate position in the stress patterns, which reflects the more ancestral ruminating system of the Tylopoda.


Asunto(s)
Fuerza de la Mordida , Mandíbula/fisiología , Masticación/fisiología , Rumiantes/fisiología , Animales , Artiodáctilos/anatomía & histología , Fenómenos Biomecánicos , Análisis por Conglomerados , Dieta , Evolución Molecular , Femenino , Análisis de Elementos Finitos , Imagenología Tridimensional , Masculino , Modelos Anatómicos , Perisodáctilos/anatomía & histología , Filogenia , Reproducibilidad de los Resultados , Especificidad de la Especie
5.
Sci Rep ; 7(1): 10174, 2017 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-28860600

RESUMEN

Developmental changes in salamander skulls, before and after metamorphosis, affect the feeding capabilities of these animals. How changes in cranial morphology and tissue properties affect the function of the skull are key to decipher the early evolutionary history of the crown-group of salamanders. Here, 3D cranial biomechanics of the adult Salamandrella keyserlingii were analyzed under different tissue properties and ossification sequences of the cranial skeleton. This helped unravel that: (a) Mechanical properties of tissues (as bone, cartilage or connective tissue) imply a consensus between the stiffness required to perform a function versus the fixation (and displacement) required with the surrounding skeletal elements. (b) Changes on the ossification pattern, producing fontanelles as a result of bone loss or failure to ossify, represent a trend toward simplification potentially helping to distribute stress through the skull, but may also imply a major destabilization of the skull. (c) Bone loss may be originated due to biomechanical optimization and potential reduction of developmental costs. (d) Hynobiids are excellent models for biomechanical reconstruction of extinct early urodeles.


Asunto(s)
Cráneo/anatomía & histología , Urodelos/fisiología , Animales , Evolución Biológica , Fenómenos Biomecánicos , Metamorfosis Biológica , Modelos Anatómicos , Filogenia , Cráneo/fisiología , Urodelos/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA