Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.341
Filtrar
1.
Nanoscale ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021117

RESUMEN

Cancer is a major health concern due to its high incidence and mortality rates. Advances in cancer research, particularly in artificial intelligence (AI) and deep learning, have shown significant progress. The swift evolution of AI in healthcare, especially in tools like computer-aided diagnosis, has the potential to revolutionize early cancer detection. This technology offers improved speed, accuracy, and sensitivity, bringing a transformative impact on cancer diagnosis, treatment, and management. This paper provides a concise overview of the application of artificial intelligence in the realms of medicine and nanomedicine, with a specific emphasis on the significance and challenges associated with cancer diagnosis. It explores the pivotal role of AI in cancer diagnosis, leveraging structured, unstructured, and multimodal fusion data. Additionally, the article delves into the applications of AI in nanomedicine sensors and nano-oncology drugs. The fundamentals of deep learning and convolutional neural networks are clarified, underscoring their relevance to AI-driven cancer diagnosis. A comparative analysis is presented, highlighting the accuracy and efficiency of traditional methods juxtaposed with AI-based approaches. The discussion not only assesses the current state of AI in cancer diagnosis but also delves into the challenges faced by AI in this context. Furthermore, the article envisions the future development direction and potential application of artificial intelligence in cancer diagnosis, offering a hopeful prospect for enhanced cancer detection and improved patient prognosis.

2.
Mol Neurobiol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976127

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a severe form of temporomandibular joint disorders (TMD), and orofacial inflammatory allodynia is one of its common symptoms which lacks effective treatment. N-methyl-D-aspartate receptor (NMDAR), particularly its subtypes GluN2A and GluN2B, along with gap junctions (GJs), are key players in the mediation of inflammatory pain. However, the precise regulatory mechanisms of GluN2A, GluN2B, and GJs in orofacial inflammatory allodynia during TMJ inflammation still remain unclear. Here, we established the TMJ inflammation model by injecting Complete Freund's adjuvant (CFA) into the TMJ and used Cre/loxp site-specific recombination system to conditionally knock out (CKO) GluN2A and GluN2B in the trigeminal ganglion (TG). Von-frey test results indicated that CFA-induced mechanical allodynia in the TMJ region was relieved in GluN2A and GluN2B deficient mice. In vivo, CFA significantly up-regulated the expression of GluN2A and GluN2B, Gjb1, Gjb2, Gjc2 and Panx3 in the TG, and GluN2A and GluN2B CKO played different roles in mediating the expression of Gjb1, Gjb2, Gjc2 and Panx3. In vitro, NMDA up-regulated the expression of Gjb1, Gjb2, Gjc2 and Panx3 in satellite glial cells (SGCs) as well as promoted the intercellular communication between SGCs, and GluN2A and GluN2B knocking down (KD) altered the expression and function differently. NMDAR regulated Gjb1 and Panx3 through ERK1/2 pathway, and mediated Gjb2 and Gjc2 through MAPK, PKA, and PKC intracellular signaling pathways. These findings shed light on the distinct functions of GluN2A and GluN2B in mediating peripheral sensitization induced by TMJ inflammation in the TG, offering potential therapeutic targets for managing orofacial inflammatory allodynia.

3.
Eur J Neurosci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992988

RESUMEN

The involvement of inwardly rectifying potassium channel 4.1 (Kir4.1) in neuropathic pain has been established. However, there is limited understanding of the downstream mechanism through which Kir4.1 contributes to orofacial neuropathic pain. The objective of this study was to examine the regulation of Kir4.1 on the expression of pannexin 3 (Panx3) in the trigeminal ganglion (TG) and the underlying mechanism in the context of orofacial neuropathic pain caused by chronic constriction injury of the infraorbital nerve (CCI-ION). The study observed a significant increase in Panx3 expression in the TG of mice with CCI-ION. Inhibition of Panx3 in the TG of CCI-ION mice resulted in alleviation of orofacial mechanical allodynia. Furthermore, conditional knockdown (CKD) of Kir4.1 in the TG of both male and female mice led to mechanical allodynia and upregulation of Panx3 expression. Conversely, overexpression of Kir4.1 decreased Panx3 levels in the TG and relieved mechanical allodynia in CCI-ION mice. In addition, silencing Kir4.1 in satellite glial cells (SGCs) decreased Panx3 expression and increased the phosphorylation of P38 MAPK. Moreover, silencing Kir4.1 in SGCs increased the levels of reactive oxygen species (ROS). The elevated phosphorylation of P38 MAPK resulting from Kir4.1 silencing was inhibited by using a superoxide scavenger known as the tempol. Silencing Panx3 in the TG in vivo attenuated the mechanical allodynia caused by Kir4.1 CKD. In conclusion, these findings suggest that the reduction of Kir4.1 promotes the expression of Panx3 by activating the ROS-P38 MAPK signalling pathway, thus contributing to the development of orofacial neuropathic pain.

4.
Blood Sci ; 6(3): e00192, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38994525

RESUMEN

Acute myeloid leukemia (AML) is a common hematological malignancy with overall poor prognosis. Exploring novel targets is urgent and necessary to improve the clinical outcome of relapsed and refractory (RR) AML patients. Through clinical specimens, animal models and cell-level studies, we explored the specific mechanism of 3-hydroxy-3-methylglutaryl coenzyme A synthase 1 (HMGCS1) in AML and the mechanism of targeting HMGCS1 to attenuate cell proliferation, increase chemotherapy sensitivity and improve the occurrence and development of AML. Here, we reveal that HMGCS1 is overexpressed in RR patients and negatively related to overall survival (OS). Knocking out HMGCS1 in AML cells attenuated cell proliferation and increased chemotherapy sensitivity, while stable overexpression of HMGCS1 had the opposite effects. Mechanistically, we identified that knockout of HMGCS1 suppressed mitogen-activated protein kinase (MAPK) pathway activity, while overexpression of HMGCS1 could remarkably enhance the pathway. U0126, a MEK1 inhibitor, offset the effects of HMGCS1 overexpression, indicating that HMGCS1 promotes RR AML through the MAPK pathway. Further, we verified that hymeglusin, a specific inhibitor of HMGCS1, decreases cell growth both in AML cell lines and primary bone marrow cells of AML patients. Furthermore, combination of hymeglusin and the common chemotherapeutic drug cytarabine and adriamycin (ADR) had synergistic toxic effects on AML cells. Our study demonstrates the important role of HMGCS1 in AML, and targeting this protein is promising for the treatment of RR AML.

6.
Front Cell Dev Biol ; 12: 1429020, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050889

RESUMEN

The adult mammalian cardiomyocyte has a limited capacity for self-renewal, which leads to the irreversible heart dysfunction and poses a significant threat to myocardial infarction patients. In the past decades, research efforts have been predominantly concentrated on the cardiomyocyte proliferation and heart regeneration. However, the heart is a complex organ that comprises not only cardiomyocytes but also numerous noncardiomyocyte cells, all playing integral roles in maintaining cardiac function. In addition, cardiomyocytes are exposed to a dynamically changing physical environment that includes oxygen saturation and mechanical forces. Recently, a growing number of studies on myocardial microenvironment in cardiomyocyte proliferation and heart regeneration is ongoing. In this review, we provide an overview of recent advances in myocardial microenvironment, which plays an important role in cardiomyocyte proliferation and heart regeneration.

7.
ACS Nano ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051978

RESUMEN

Lean-lithium metal batteries represent an advanced version of the anode-free lithium metal batteries, which can ensure high energy density and cycling stability while addressing the safety concerns and the loss of energy density caused by excessive lithium metal. Herein, a mechanically robust carbon nanotube framework current collector with gradient lithiophilicity is constructed for a lean-lithium metal battery. Using the physical vapor deposition method, precise prelithiation of a carbon nanotube framework is achieved, eliminating its irreversible capacity, retaining the porous structure in the framework, and inducing the gradient lithiophilicity formation due to spontaneous lithium ion diffusion. The lithiophilic gradient and three-dimensional porous structure are characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), scanning transmission electron microscopy (STEM), and corresponding electron energy loss spectroscopy (EELS), which enables the preferential deposition of lithium ions at the bottom of the carbon nanotube framework, thereby avoiding lithium losses associated with dead lithium. As a result, in the LiFePO4 full cell with an ultralow N/P ratio of 0.15, the initial Coulombic efficiency increases from 77.75 to 95.07%. Collaborating synergistically with the ultrathin (1.5 µm) lithium metal, serving as a gradual lithium supplement, the full cell with an N/P ratio of 1.43 demonstrates an 86% capacity retention after 500 cycles at 1C, far surpassing the copper-based counterparts (0.9%).

8.
Ageing Res Rev ; 99: 102363, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838785

RESUMEN

The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.


Asunto(s)
Trastornos Mentales , Humanos , Trastornos Mentales/fisiopatología , Trastornos Mentales/terapia , Animales , Complejo Nuclear Basolateral/fisiología , Complejo Nuclear Basolateral/fisiopatología
9.
Artículo en Inglés | MEDLINE | ID: mdl-38841748

RESUMEN

BACKGROUND: Limited research has explored the impact of mosquito repellents exposure during early life on ADHD symptoms. This study aimed to explore the associations of exposure to mosquito repellents from pregnancy to 3 years old and the prevalence of ADHD-like behaviours among children aged 3-9 years, and further identify the sensitive exposure period. METHODS: A cross-sectional study was conducted, including 12 275 children in Hefei City, China. Exposure was self-reported via primary caregivers. ADHD-like behaviours were measured by the Swanson, Nolan and Pelham, version IV scale (SNAP-IV), and Conners' Parent Rating Scale (CPRS). Cross-over analysis, binary logistic regression and linear regression were employed. RESULTS: After adjusting for confounding variables, early-life exposure to mosquito repellents was associated with a higher risk of ADHD-like behaviours (OR = 1.81, 95% CI = 1.49-2.19). By comparing the strength of the association for each subgroup, we found exposure during 1-3 years old was a sensitive period (OR = 1.89, 95% CI = 1.25-2.87) by the cross-over analysis. Furthermore, we found a dose-response relationship in which the likelihood of ADHD-like behaviours increased with children's early-life mosquito repellents exposure dose. CONCLUSIONS: Early-life exposure to mosquito repellents is linked with an elevated risk of ADHD-like behaviours in children, with a sensitive period identified during 1-3 years old.

10.
Aesthet Surg J ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870037

RESUMEN

BACKGROUND: Persistent macrophage infiltration may lead to adverse consequences, such as calcifications and nodules in fat grafts. Lymphatic vessels, which transport inflammatory cells, are involved in regulating inflammatory responses. Less is known, however, about lymphatic vessels after fat grafting. OBJECTIVES: The aim of this study was to explore the regulation of fat graft survival by lymphatic vessels. METHODS: A common adipose graft model was constructed to assess the processes responsible for changes in the number of lymphatic vessels in grafts. Adipose tissue samples from C57/BL6 mice and green fluorescent protein-expressing mice were cross-grafted to determine the source of lymphatic vessels. The number of lymphatic vessels in the grafts was increased by treatment with vascular endothelial growth factor C, and the effects of this increase on fat grafting were evaluated. RESULTS: The number of lymphatic vessels was greater in postgrafted fat than in inguinal fat before transplantation, with lymphatic vessels in these grafts gradually transitioning from donor to recipient sources. Lymphatic vessels grew more slowly than blood vessels during early stages of grafting; during later stages, however, the number of blood vessels declined markedly, with more lymphatic vessels than blood vessels being observed 60 days after grafting. Vascular endothelial growth factor C treatment increased graft lymphatics and distant volume retention, while reducing fibrosis and oil sacs. Lymphatic vessels acted as drainage channels for macrophages, with the degree of sustained macrophage infiltration decreasing with increases in the number of lymphatic vessels. CONCLUSIONS: Increasing the number of lymphatic vessels is beneficial for fat graft survival, which may be related to a reduction in prolonged macrophage infiltration.

11.
Adv Sci (Weinh) ; : e2401793, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874469

RESUMEN

The rise of antibiotic resistance poses a significant public health crisis, particularly due to limited antimicrobial options for the treatment of infections with Gram-negative pathogens. Here, an antimicrobial peptide (AMP) SR25 is characterized, which effectively kills both Gram-negative and Gram-positive bacteria through a unique dual-targeting mechanism without detectable resistance. Meanwhile, an SR25-functionalized hydrogel is developed for the efficient treatment of infected diabetic wounds. SR25 is obtained through genome mining from an uncultured bovine enteric actinomycete named Nonomuraea Jilinensis sp. nov. Investigations reveal that SR25 has two independent cellular targets, disrupting bacterial membrane integrity and restraining the activity of succinate:quinone oxidoreductase (SQR). In a diabetic mice wound infection model, the SR25-incorporated hydrogel exhibits high efficacy against mixed infections of Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA), accelerating wound healing. Overall, these findings demonstrate the therapeutic potential of SR25 and highlight the value of mining drugs with multiple mechanisms from uncultured animal commensals for combating challenging bacterial pathogens.

13.
Eur J Med Chem ; 275: 116626, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944934

RESUMEN

The global microbial resistance is a serious threat to human health, and multitargeting compounds are considered to be promising to combat microbial resistance. In this work, a series of new thiazolylquinolones with multitargeting antimicrobial potential were developed through multi-step reactions using triethoxymethane and substituted anilines as start materials. Their structures were confirmed by 1H NMR, 13C NMR and HRMS spectra. Antimicrobial evaluation revealed that some of the target compounds could effectively inhibit microbial growth. Especially, carbothioamido hydrazonyl aminothiazolyl quinolone 8a showed strong inhibitory activity toward drug-resistant Staphylococcus aureus with MIC value of 0.0047 mM, which was 5-fold more active than that of norfloxacin. The highly active compound 8a exhibited negligible hemolysis, no significant toxicity in vitro and in vivo, low drug resistance, as well as rapidly bactericidal effects, which suggested its favorable druggability. Furthermore, compound 8a was able to effectively disrupt the integrity of the bacterial membrane, intercalate into DNA and inhibit the activity of topoisomerase IV, suggesting multitargeting mechanism of action. Compound 8a could form hydrogen bonds and hydrophobic interactions with DNA-topoisomerase IV complex, indicating the insertion of aminothiazolyl moiety was beneficial to improve antibacterial efficiency. These findings indicated that the active carbothioamido hydrazonyl aminothiazolyl quinolone 8a as a chemical therapeutic candidate demonstrated immense potential to tackle drug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Quinolonas , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Quinolonas/farmacología , Quinolonas/química , Quinolonas/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Humanos , Relación Dosis-Respuesta a Droga , Staphylococcus aureus/efectos de los fármacos , Animales
14.
Clin Cosmet Investig Dermatol ; 17: 1329-1332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864026

RESUMEN

Reactive perforating collagenosis (RPC) is the most common form of the perforating dermatoses, which include RPC, elastosis perforans serpiginosa (EPS), perforating folliculitis (PF), and Kyrle disease (KD). In RPC, altered collagen of the dermis is extruded through the epidermis, which can be misdiagnosed as other skin diseases, such as vasculitis or prurigo nodularis. RPC is associated with a number of conditions, including diabetes mellitus, hepatitis, and renal failure, and thus the management of the coexisting diseases is important. There is currently no standardized and effective treatment method for RPC. Here, we report a patient with RPC who was resistant to topical corticosteroids, oral loratadine, and thalidomide, and responded well to dupilumab without significant side effects.

15.
Front Med (Lausanne) ; 11: 1326566, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841587

RESUMEN

Background: Dexmedetomidine has been used as a perineural local anesthetic (LA) adjuvant to facilitate the potency of erector spinal plane block (ESPB). This quantitative review aimed to evaluate whether perineural dexmedetomidine for ESPB can improve the effects of analgesia compared to LA alone. Methods: Randomized controlled trials (RCTs) that investigated the addition of dexmedetomidine to LA compared to LA alone in ESPB were included. The pain scores, duration of sensory block, the time to first analgesia requirement, postoperative morphine consumption, rescue analgesia, and dexmedetomidine-related side effects were analyzed and combined using random-effects models. Results: A total of 823 patients from 13 RCTs were analyzed. Dexmedetomidine was used at the concentration of 0.5 µg/kg in three trials and 1 µg/kg in nine trials, and both in one trial. Both concentrations of dexmedetomidine perineurally administrated significantly reduced the rest VAS scores postoperatively at 12 h (0.5 µg/kg dexmedetomidine: MD = -0.86; 95% CI: -1.59 to -0.12; p = 0.02; 1 µg/kg dexmedetomidine: MD = -0.49; 95% CI: -0.83 to -0.16; p = 0.004), and 24 h (0.5 µg/kg dexmedetomidine: MD = -0.43; 95% CI: -0.74 to -0.13; p = 0.005; 1 µg/kg dexmedetomidine: MD = -0.62; 95% CI: -0.84 to -0.41; p < 0.00001). Both concentrations of dexmedetomidine added in LAs improved the dynamic VAS scores postoperatively at 12 h (0.5 µg/kg dexmedetomidine: MD = -0.55; 95% CI: -0.95 to -0.15; p = 0.007; 1 µg/kg dexmedetomidine: MD = -0.66; 95% CI: -1.05 to -0.28; p = 0.0006) and 24 h (0.5 µg/kg dexmedetomidine: MD = -0.52; 95% CI: -0.94 to -0.10; p = 0.01; 1 µg/kg dexmedetomidine: MD = -0.46; 95% CI: -0.75 to -0.16; p = 0.002). Furthermore, perineural dexmedetomidine prolonged the duration of the sensory block and the time to first analgesia requirement, reduced postoperative morphine consumption, and lowered the incidence of rescue analgesia and chronic pain. Conclusion: The meta-analysis showed that using perineural dexmedetomidine at either 0.5 µg/kg or 1 µg/kg doses in ESPB can effectively and safely enhance pain relief. Systematic review registration: PROSPERO (CRD42023424532: https://www.crd.york.ac.uk/PROSPERO/).

16.
Apoptosis ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886311

RESUMEN

Disulfidptosis is a novel form of cell death that is distinguishable from established programmed cell death pathways such as apoptosis, pyroptosis, autophagy, ferroptosis, and oxeiptosis. This process is characterized by the rapid depletion of nicotinamide adenine dinucleotide phosphate (NADPH) in cells and high expression of solute carrier family 7 member 11 (SLC7A11) during glucose starvation, resulting in abnormal cystine accumulation, which subsequently induces andabnormal disulfide bond formation in actin cytoskeleton proteins, culminating in actin network collapse and disulfidptosis. This review aimed to summarize the underlying mechanisms, influencing factors, comparisons with traditional cell death pathways, associations with related diseases, application prospects, and future research directions related to disulfidptosis.

17.
J Neurosci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926088

RESUMEN

Current anesthetic theory is mostly based on neurons and/or neuronal circuits. A role for astrocytes also has been shown in promoting recovery from volatile anesthesia, while the exact modulatory mechanism and/or the molecular target in astrocytes is still unknown. In this study, by animal models in male mice and electrophysiological recordings in vivo and in vitro, we found that activating astrocytes of paraventricular thalamus (PVT) and/or knocking down PVT astrocytic Kir4.1 promoted the consciousness recovery from sevoflurane anesthesia. Single-cell RNA sequencing of PVT reveals two distinct cellular subtypes of glutamatergic neurons: PVT GRM and PVT ChAT neurons. Patch-clamp recording results proved astrocytic Kir4.1-mediated modulation of sevoflurane on PVT mainly worked on PVT ChAT neurons, which projected mainly to the mPFC. In summary, our findings support the novel conception that there is a specific PVT-prefrontal cortex projection involved in consciousness recovery from sevoflurane anesthesia, which mediated by the inhibition of sevoflurane on PVT astrocytic Kir4.1 conductance.Significance Statement How volatile anesthetics work is not fully understood. Here, we demonstrate that the commonly used volatile anesthetic sevoflurane can inhibit astrocytic Kir4.1 conductance in PVT, which enhances neuronal firing of PVT neurons. Additionally, by single-cell sequencing, cholinergic neurons in the PVT (PVT ChAT ) are the neuronal substrates for astrocytic modulation in volatile anesthesia, which directly project to prefrontal cortex. Behaviorally, the modulation of astrocytes on PVT ChAT promotes electroencephalogram (EEG) transition of prefrontal cortex; and then accelerates emergence from sevoflurane anesthesia. In summary, this study is the first to identify that astrocytic Kir4.1 in wakeful nuclei is involved in consciousness recovery from volatile anesthetics, as well as the subcellular mechanism.

18.
Neural Regen Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38934400

RESUMEN

ABSTRACT: Glial cells play crucial roles in regulating physiological and pathological functions, including sensation, the response to infection and acute injury, and chronic neurodegenerative disorders. Glial cells include astrocytes, microglia, and oligodendrocytes in the central nervous system, and satellite glial cells and Schwann cells in the peripheral nervous system. Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models, few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord. Here, we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes, microglia, and oligodendrocytes in the human spinal cord. To explore the conservation and divergence across species, we compared these findings with those from mice. In the human spinal cord, astrocytes, microglia, and oligodendrocytes were each divided into six distinct transcriptomic subclusters. In the mouse spinal cord, astrocytes, microglia, and oligodendrocytes were divided into five, four, and five distinct transcriptomic subclusters, respectively.The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice. Additionally, we detected sex differences in gene expression in human spinal cord glial cells. Specifically, in all astrocyte subtypes, the levels of NEAT1 and CHI3L1 were higher in males than in females, whereas the levels of CST3 were lower in males than in females. In all microglial subtypes, all differentially expressed genes were located on the sex chromosomes. In addition to sex-specific gene differences, the levels of MT-ND4, MT2A, MT-ATP6, MT-CO3, MT-ND2, MT-ND3, and MT-CO2 in all spinal cord oligodendrocyte subtypes were higher in females than in males. Collectively, the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cord-related illnesses, including chronic pain, amyotrophic lateral sclerosis, and multiple sclerosis.

19.
Drug Des Devel Ther ; 18: 2357-2366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915867

RESUMEN

Introduction: Nerve injury is a serious complication of percutaneous endoscopic transforaminal lumbar discectomy due to nerve root contact. The maximum tolerable concentration (MTC) of ropivacaine concentration for epidural anaesthesia, is defined as the concentration that minimises pain while preserving the sensation of the nerve roots. This distinct advantage allows the patient to provide feedback to the surgeon when the nerve roots are contacted. Methods: We used a biased-coin design to determine the MTC, which was estimated by the 10% effective concentration (EC10), ie, the concentration at which 10% of patients lost sensation in the nerve roots. The determinant for positive response was lack of sensory feedback upon contact with the nerve root, and the feedback from occurrence of sensations in the innervation area upon contact with the nerve root was defined as a negative response. Primary outcome was the response from contact nerve root. Secondary outcomes were the type and number of statements of negative response and each patient's pain score during surgery. Results: Fifty-four patients were included in this study. The EC10 was 0.434% (95% CI: 0.410%, 0.440%) using isotonic regression in comparison with 0.431% (95% CI: 0.399%, 0.444%) using probit regression. Three type statements of negative response were reported including "tactile sensation", radiculalgia, and numbness. Conclusion: The MTC of ropivacaine used for epidural anaesthesia was 0.434% to avoid nerve injury in percutaneous endoscopic transforaminal lumbar discectomy.


Asunto(s)
Anestesia Epidural , Anestésicos Locales , Vértebras Lumbares , Ropivacaína , Ropivacaína/administración & dosificación , Humanos , Masculino , Persona de Mediana Edad , Femenino , Vértebras Lumbares/cirugía , Adulto , Anestésicos Locales/administración & dosificación , Anestesia Epidural/métodos , Anestesia Epidural/efectos adversos , Discectomía Percutánea/métodos , Endoscopía , Raíces Nerviosas Espinales/cirugía , Relación Dosis-Respuesta a Droga , Sensación/efectos de los fármacos , Anciano
20.
Anal Chim Acta ; 1315: 342797, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38879209

RESUMEN

BACKGROUND: Harmful algal blooms (HABs), caused by the rapid proliferation or aggregation of microorganisms, are catastrophic for the environment. The Prymnesium parvum is a haptophyte algal species that is found worldwide and is responsible for extensive blooms and death of larval amphibians and bivalves, causing serious negative impacts on the ecological environment. For the prevention and management of environmental pollution, it is crucial to explore and develop early detection strategies for HABs on-site using simple methods. The major challenge related to early detection is the accurate and sensitive detection of algae present in low abundance. RESULTS: Herein, recombinase polymerase amplification (RPA) was combined with clustered regularly interspaced short palindromic repeats and Cas12a protein (CRISPR-LbaCas12a) systems, and the lateral flow dipstick (LFD) was used for the first time for early detection of P. parvum. The internal transcribed spacer (ITS) of P. parvum was selected as the target sequence, and the concentration of single-strand DNA reporters, buffer liquid system, reaction time, and amount of gold particles were optimized. The RPA-CRISPR-LbaCas12a-LFD approach demonstrated highly specificity during experimental testing, with no cross-reaction against different microalgae used as controls. In addition, the lowest detection limit was 10,000 times better than the lowest detection limit of the standalone RPA approach. The feasibility and robustness of this approach were further verified by using the different environmental samples. It also observed that P. parvum are widely distributed in Chinese Sea, but the cell density of P. parvum is relatively low (<0.1 cells/mL). SIGNIFICANCE: The developed approach has an excellent specificity and offers 10,000 times better sensitivity than the standalone RPA approach. These advantages make this approach suitable for early warning detection and prevention of HAB events in environmental water. Also, the outcomes of this study could promote a shift from traditional laboratory-based detection to on-site monitoring, facilitating early warning against HABs.


Asunto(s)
Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Recombinasas/metabolismo , Floraciones de Algas Nocivas , Oro/química , Proteínas Asociadas a CRISPR/genética , Endodesoxirribonucleasas/genética , Proteínas Bacterianas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...