Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 476: 135045, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944990

RESUMEN

Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 µM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.


Asunto(s)
Biodegradación Ambiental , Hidrolasas , Insecticidas , Rhodococcus , Rhodococcus/metabolismo , Rhodococcus/genética , Hidrolasas/metabolismo , Hidrolasas/genética , Insecticidas/metabolismo , Insecticidas/química , Insecticidas/toxicidad , Simulación del Acoplamiento Molecular , Uretano/metabolismo , Uretano/química
2.
Sci Total Environ ; 849: 157765, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-35926624

RESUMEN

Improving forage productivity with lower greenhouse gas (GHG) emissions from limited grassland has been a hotspot of interest in global agricultural production. In this study, we analyzed the effects of grasses (tall fescue, smooth bromegrass), legume (alfalfa), and alfalfa-grass (alfalfa + smooth bromegrass and alfalfa + tall fescue) mixtures on GHG emissions, net global warming potential (Net GWP), yield-based greenhouse gas intensity (GHGI), soil chemical properties and forage productivity in cultivated grassland in northwest China during 2020-2021. Our results demonstrated that alfalfa-grass mixtures significantly improved forage productivity. The highest total dry matter yield (DMY) during 2020 and 2021 was obtained from alfalfa-tall fescue (11,311 and 13,338 kg ha-1) and alfalfa-smooth bromegrass mixtures (10,781 and 12,467 kg ha-1). The annual cumulative GHG emissions from mixtures were lower than alfalfa monoculture. Alfalfa-grass mixtures significantly reduced GHGI compared with the grass or alfalfa monocultures. Furthermore, results indicated that grass, alfalfa and alfalfa-grass mixtures differentially affected soil chemical properties. Lower soil pH and C/N ratio were recorded in alfalfa monoculture. Alfalfa and mixtures increased soil organic carbon (SOC) and soil total nitrogen (STN) contents. Importantly, alfalfa-grass mixtures are necessary for improving forage productivity and mitigating the GHG emissions in this region. In conclusion, the alfalfa-tall fescue mixture lowered net GWP and GHGI in cultivated grassland while maintaining high forage productivity. These advanced agricultural practices could contribute to the development of climate-sustainable grassland production in China.


Asunto(s)
Festuca , Gases de Efecto Invernadero , Lolium , Agricultura/métodos , Carbono , Calentamiento Global , Gases de Efecto Invernadero/análisis , Medicago sativa , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Poaceae , Suelo
3.
Sci Total Environ ; 829: 154628, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35304148

RESUMEN

Forage crops are widely cultivated as livestock feed to relieve grazing pressure in agro-pastoral regions with arid climates. However, gaseous losses of soil nitrogen (N) following N fertilizer application have been considerable in response to the pursuit of increased crop yield. A two-year experiment was carried out in a typical saline field under a temperate continental arid climate to investigate the effect of N application rate on N2O emissions from barley (Hordeum vulgare L.), corngrass (Zea mays × Zea Mexicana), rye (Secale cereale L.), and sorghum-sudangrass hybrid (Sorghum bicolor × Sorghum sudanense). The dynamics of N2O emissions, hay yield, and crude protein (CP) yield were measured under four N application rates (0, 150, 200, and 250 kg ha-1) in 2016 and 2017. An N2O emission peak was observed for all crop species five days after each N application. Cumulative N2O fluxes in the growing season ranged from 0.66 to 2.40 kg ha-1 and responded exponentially to N application rate. Emission factors of N2O showed a linear increase with N application rate for all crop species, but the linear slopes significantly differed between barley or rye and corngrass and sorghum-sudangrass hybrid. The hay and CP yields of all forage grasses significantly increased with the increase of N application rate from 0 to 200 kg ha-1. Barley and rye with lower hay and CP yields showed higher N2O emission intensities. The increased level of N2O emission intensity was higher from 200 to 250 kg ha-1 than from 150 to 200 kg ha-1. At N application rates of 200 and 250 kg ha-1, CP yield had a significantly negative correlation with cumulative N2O emission and explained 50.5% and 62.9% of the variation, respectively. In conclusion, ~200 kg ha-1 is the optimal N rate for forage crops to minimize N2O emission while maintaining yield in continental arid regions.


Asunto(s)
Fertilizantes , Óxido Nitroso , Agricultura , Productos Agrícolas , Grano Comestible/química , Fertilizantes/análisis , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo
4.
J Anim Physiol Anim Nutr (Berl) ; 105(4): 611-620, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33452731

RESUMEN

Low selenium (Se) in soil and forage can adversely affect on the quality of animal-derived foods, and hence on human health. Lambs grazed on mixed pastures of alfalfa (Medicago sativa) and tall fescue (Festuca arundinacea) were supplemented with five levels of Se [0, 3, 6, 9 and 12 µg/kg body weight (BW)]. The intake of dry matter (DM) and organic matter (OM) varied with the level of Se supplementation, with a peak at 6 µg Se per kg BW (p ≤ 0.05). Gross energy (GE) intake, digestive energy (DE) intake and metabolic energy (ME) intake were higher at 6 µg Se per kg BW than at other Se levels (p < 0.01); in addition, methane energy (CH4 -E) output was lower at 6 µg Se per kg BW. Supplementation with Se significantly increased nitrogen (N) intake, faecal N and urine N, for which the peak values were 20.2 g N/, 5.62 g N/day and 7.92 g N/day, respectively, at 6 µg Se per kg BW. Se intake, blood Se, faecal Se, urine Se and retained Se were negatively correlated with forage crude protein (CP) content (p < 0.001) but were positively correlated with the content of neutral detergent fibre (NDF) (p < 0.001) and acid detergent fibre (ADF) (p < 0.001). Thus, we recommend the addition of 6 µg Se per kg BW to sheep grazed on pastures in regions with low soil Se.


Asunto(s)
Festuca , Selenio , Alimentación Animal/análisis , Animales , Suplementos Dietéticos , Digestión , Ingestión de Alimentos , Medicago sativa , Poaceae , Selenio/farmacología , Ovinos
5.
Anim Sci J ; 91(1): e13392, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32557991

RESUMEN

This study evaluated the effects of Allium mongolicum Regel (AM) supplementation on nitrogen (N) balance, ruminal fermentation, and antioxidant properties. Sixteen male calves were assigned randomly to four groups, and the four were added with 0 (CON), 200 mg/kg (body weight; BW) (Low AM; LA), 400 mg/kg (BW) (Middle AM; MA), or 800 mg/kg (BW) (High AM; HA) per day for each individual. AM was added on dry matter (DM) basis. The experiment lasted for 58 days. Supplementation of AM could significantly increase average daily gain, DM digestibility, acid detergent fiber digestibility, and retained N/Intake N. N digestibility and molar proportion of propionate in the MA and HA treatments were higher than that in the CON treatment (p < .05), respectively. AM supplementation significantly increased the molar concentration of total volatile fatty acid in the rumen fluid (p < .05). The ratio of acetate to propionate in the MA and HA groups was lower than that in the CON treatment (p < .05). Furthermore, AM supplementation significantly reduced methane (CH4 ) (p < .05) emissions. AM supplementation significantly increased the activities of superoxide dismutase. The MA group could significantly increase the activities of glutathione peroxidase and decrease the content of malondialdehyde. Our results indicated that AM supplementation could affect the nutrient digestibility, CH4 emission, and antioxidant capacity of Simmental calves.


Asunto(s)
Allium , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Antioxidantes/metabolismo , Bovinos/metabolismo , Bovinos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Metano/metabolismo , Animales , China , Fermentación , Malondialdehído/metabolismo , Rumen/metabolismo , Superóxido Dismutasa/metabolismo , Aumento de Peso
6.
PeerJ ; 8: e8738, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195058

RESUMEN

Alfalfa in China is mostly planted in the semi-arid or arid Northwest inland regions due to its ability to take up water from deep in the soil and to fix atmospheric N2 which reduces N fertilizer application. However, perennial alfalfa may deplete soil water due to uptake and thus aggravate soil desiccation. The objectives of this study were (1) to determine the alfalfa forage yield, soil property (soil temperature (ST), soil water content (SWC), soil organic carbon (SOC) and soil total nitrogen (STN)) and greenhouse gas (GHG: methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2)) emissions affected by alfalfa stand age and growing season, (2) to investigate the effects of soil property on GHG emissions, and (3) to optimize the alfalfa stand age by integrating the two standard criteria, the forage yield and water use efficiency, and the total GHG efflux (CO2-eq). This study was performed in alfalfa fields of different ages (2, 3, 5 and 7 year old) during the growing season (from April to October) in a typical salinized meadow with temperate continental arid climate in the Northwest inland regions, China. Despite its higher total GHG efflux (CO2-eq), the greater forage yield and water use efficiency with lower GEIhay and high CH4 uptake in the 5-year alfalfa stand suggested an optimal alfalfa stand age of 5 years. Results show that ST, SOC and RBM alone had positive effects (except RBM had no significant effect on CH4 effluxes), but SWC and STN alone had negative effects on GHG fluxes. Furthermore, results demonstrate that in arid regions SWC superseded ST, SOC, STN and RBM as a key factor regulating GHG fluxes, and soil water stress may have led to a net uptake of CH4 by soils and a reduction of N2O and CO2 effluxes from alfalfa fields. Our study has provided insights into the determination of alfalfa stand age and the understanding of mechanisms regulating GHG fluxes in alfalfa fields in the continental arid regions. This knowledge is essential to decide the alfalfa retention time by considering the hay yield, water use efficiency as well as GHG emission.

7.
J Anim Physiol Anim Nutr (Berl) ; 104(1): 22-31, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31596014

RESUMEN

Twelve Hu sheep × thin-tail Han crossbred dry ewes with an average body weight of 32.6 ± 0.68 kg and an age of 3 years were arranged in a 3 × 3 Latin square design, with each experimental period of 24 d to evaluate the effect of substituting alfalfa hay in a portion of concentrate on nutrient intake, digestibility, N utilisation efficiency and methane emissions. The ratios of corn straw to alfalfa to concentrate for 3 diet treatments were 60:0:40, 60:15:25 and 60:30:10, respectively. Intake and digestibility were measured for each of the ewes, which were housed in individual metabolism crates for 6 d after an adaptation period of 14 d, and the feed was offered at 1.2 MEm to ensure approximately 10% orts. Methane emissions were determined in a respiration chamber for 2 consecutive d. An increase in the levels of alfalfa as a substitute for concentrate significantly increased the roughage, NSC and ADF intake and faecal N output as a proportion of N intake and manure N output. Furthermore, this increase in alfalfa input levels decreased DE, ME and N intake; nutrient digestibility; DE/GE, ME/GE and CH4 emissions per day; CH4 output expressed as a portion of the DM, OM and GE intake; and urinary N and ammonia N output, especially between extreme treatments. Alfalfa input levels had no effect on the BW, DM and GE intake; the EB or EB/GE intake; and the retained N. This study indicated that increasing alfalfa input as a substitute for concentrate could significantly decrease the digestibility, CH4 emissions and urinary N and NH4 + -N outputs; and shift the N excretion from urine to faeces; and could sustain a similar DM intake.


Asunto(s)
Alimentación Animal/análisis , Dieta/veterinaria , Fibras de la Dieta/administración & dosificación , Medicago sativa , Metano/biosíntesis , Ovinos/metabolismo , Amoníaco/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Nitrógeno/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...