Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 24(40): 8678-89, 2004 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-15470133

RESUMEN

Acid-sensing ion channels (ASICs), a novel class of ligand-gated cation channels activated by protons, are highly expressed in peripheral sensory and central neurons. Activation of ASICs may play an important role in physiological processes such as nociception, mechanosensation, and learning-memory, and in the pathology of neurological conditions such as brain ischemia. Modulation of the activities of ASICs is expected to have a significant influence on the roles that these channels can play in both physiological and/or pathological processes. Here we show that the divalent cation Zn2+, an endogenous trace element, dose-dependently inhibits ASIC currents in cultured mouse cortical neurons at nanomolar concentrations. With ASICs expressed in Chinese hamster ovary cells, Zn2+ inhibits currents mediated by homomeric ASIC1a and heteromeric ASIC1a-ASIC2a channels, without affecting currents mediated by homomeric ASIC1beta, ASIC2a, or ASIC3. Consistent with ASIC1a-specific modulation, high-affinity Zn2+ inhibition is absent in neurons from ASIC1a knock-out mice. Current-clamp recordings and Ca2+-imaging experiments demonstrated that Zn2+ inhibits acid-induced membrane depolarization and the increase of intracellular Ca2+. Mutation of lysine-133 in the extracellular domain of the ASIC1a subunit abolishes the high-affinity Zn2+ inhibition. Our studies suggest that Zn2+ may play an important role in a negative feedback system for preventing overexcitation of neurons during normal synaptic transmission and ASIC1a-mediated excitotoxicity in pathological conditions.


Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Neuronas/fisiología , Zinc/farmacología , Canales Iónicos Sensibles al Ácido , Secuencia de Aminoácidos , Animales , Células CHO , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Quelantes/farmacología , Cricetinae , Cricetulus , Conductividad Eléctrica , Concentración de Iones de Hidrógeno , Lisina/genética , Potenciales de la Membrana , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Canales de Sodio/química , Canales de Sodio/genética
2.
Cell ; 118(6): 687-98, 2004 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-15369669

RESUMEN

Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+ -permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+ -dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+ -permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1a blockers or knockout of the ASIC1a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+]i, disclosing new potential therapeutic targets for stroke.


Asunto(s)
Acidosis/metabolismo , Isquemia Encefálica/metabolismo , Calcio/metabolismo , Ácido Glutámico/metabolismo , Proteínas de la Membrana/metabolismo , Degeneración Nerviosa/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Acidosis/complicaciones , Acidosis/tratamiento farmacológico , Animales , Isquemia Encefálica/tratamiento farmacológico , Células COS , Calcio/toxicidad , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Células Cultivadas , Modelos Animales de Enfermedad , Diseño de Fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/toxicidad , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/etiología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Fármacos Neuroprotectores/farmacología , Ratas , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/genética
3.
J Physiol ; 550(Pt 2): 385-99, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12777448

RESUMEN

The effects of extracellular pH (pHo) on calcium-sensing non-selective cation (csNSC) channels in cultured mouse hippocampal neurons were investigated using whole-cell voltage-clamp and current-clamp recordings. Decreasing extracellular Ca2+ concentrations ([Ca2+]o) activated slow and sustained inward currents through the csNSC channels. Decreasing pHo activated amiloride-sensitive transient proton-gated currents which decayed to baseline in several seconds. With proton-gated channels inactivated by pre-perfusion with low pH solution or blocked by amiloride, decreasing pHo to 6.5 inhibited the csNSC currents with a leftward shift of the Ca2+ dose-inhibition curve. Increasing pH to 8.5, on the other hand, caused a rightward shift of the Ca2+ dose-inhibition curve and potentiated the csNSC currents. Intracellular alkalinization following bath perfusion of quinine mimicked the potentiation of the csNSC currents by increasing pHo, while intracellular acidification by addition and subsequent withdrawal of NH4Cl mimicked the inhibition of the csNSC currents by decreasing pHo. Intracellular pH (pHi) imaging demonstrated that decreasing pHo induced a corresponding decrease in pHi. Including 30 mM Hepes in the pipette solution eliminated the effects of quinine and NH4Cl on the csNSC currents, but only partially reduced the effect of lowering pHo. In current-clamp recordings, decreasing [Ca2+]o induced sustained membrane depolarization and excitation of hippocampal neurons. Decreasing pHo to 6.5 inhibited the low [Ca2+]o-induced csNSC channel-mediated membrane depolarization and the excitation of neurons. Our results indicate that acidosis may inhibit low [Ca2+]o-induced neuronal excitation by inhibiting the activity of the csNSC channels. Both the extracellular and the intracellular sites are involved in the proton modulation of the csNSC channels.


Asunto(s)
Acidosis/fisiopatología , Calcio/farmacología , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores Sensibles al Calcio/antagonistas & inhibidores , Amilorida/farmacología , Animales , Células Cultivadas , Diuréticos/farmacología , Estimulación Eléctrica , Electrofisiología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/fisiología , Ratones , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp
4.
J Neurophysiol ; 87(5): 2555-61, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11976391

RESUMEN

Acid-sensing ion channels (ASICs) are expressed in various sensory and central neurons. The functional role of these channels remains elusive. Complex subunit combinations and lack of specific blockers for native receptors are likely to contribute to the difficulty of resolving the function of ASICs. Finding a neuronal cell line, which expresses a single population of ASICs, should prove to be useful in delineating the function of individual ASICs. Using patch-clamp, Ca(2+)-imaging, and RT-PCR techniques, we have explored the existence of ASICs in PC12 cells, a clonal neuronal cell line. Fast drops of extracellular pH activated transient inward currents in PC12 cells with pH(0.5) at 6.0-6.2. The ASICs in PC12 cells were selective for Na(+) with significant Ca(2+) permeability. Currents in PC12 cells were blocked by the nonselective ASIC blocker amiloride. PcTX1, a specific homomeric ASIC1a blocker, also blocked the ASIC currents with an IC(50) of approximately 1.5 nM. RT-PCR demonstrated the existence of ASIC1a transcript in both undifferentiated and nerve growth factor-differentiated PC12 cells. Our data suggest that PC12 cells likely contain a single population of functional proton-gated channel-homomeric ASIC1a. It might be an ideal neuronal cell line for the study of physiological and potential pathological roles of this key subunit of ASICs.


Asunto(s)
Proteínas de la Membrana , Proteínas del Tejido Nervioso , Neuronas/fisiología , Canales de Sodio/metabolismo , Canales Iónicos Sensibles al Ácido , Amilorida/farmacología , Animales , Calcio/metabolismo , Diferenciación Celular , Diuréticos/farmacología , Capacidad Eléctrica , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/citología , Células PC12 , Péptidos , Protones , ARN Mensajero/análisis , Ratas , Sodio/metabolismo , Bloqueadores de los Canales de Sodio , Canales de Sodio/genética , Venenos de Araña/farmacología , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA