Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
2.
Front Chem ; 12: 1494407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355203
3.
Biochem Pharmacol ; : 116560, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39343180

RESUMEN

The escalating prevalence of obesity presents a formidable global health challenge, underscoring the imperative for efficacious pharmacotherapeutic interventions. However, current anti-obesity medications often exhibit limited efficacy and adverse effects, necessitating the exploration of alternative therapeutic approaches. Growth differentiation factor 15 (GDF15) has emerged as a promising target for obesity management, given its crucial role in appetite control and metabolic regulation. In this study, we aimed to investigate the efficacy of curcumol, a sesquiterpene compound derived from plants of the Zingiberaceae family, in obesity treatment. Our findings demonstrate that curcumol effectively induces the expression of GDF15 through the activation of the endoplasmic reticulum stress pathway. To confirm the role of GDF15 as a critical target for curcumol's function, we compared the effects of curcumol in wild-type mice and Gdf15-knockout mice. Using a high-fat diet-induced obese murine model, we observed that curcumol led to reduced appetite and altered dietary preferences mediated by GDF15. Furthermore, chronic curcumol intervention resulted in promising anti-obesity effects. Additionally, curcumol administration improved glucose tolerance and lipid metabolism in the obese mice. These findings highlight the potential of curcumol as a GDF15 inducer and suggest innovative strategies for managing obesity and its associated metabolic disorders. In conclusion, our study provides evidence for the efficacy of curcumol in obesity treatment by inducing GDF15 expression. The identified effects of curcumol on appetite regulation, dietary preferences, glucose tolerance, and lipid metabolism emphasize its potential as a therapeutic agent for combating obesity and related metabolic disorders.

4.
Antioxidants (Basel) ; 13(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39199205

RESUMEN

The balanced crosstalk between miRNAs and autophagy is essential in hypertensive nephropathy. Hydrogen sulfide donors have been reported to attenuate renal injury, but the mechanism is unclear. We aimed to identify and verify the miRNAs and autophagy regulatory networks in hypertensive nephropathy treated with hydrogen sulfide donors through bioinformatics analysis and experimental verification. From the miRNA dataset, autophagy was considerably enriched in mice kidney after angiotensin II (AngII) and combined hydrogen sulfide treatment (H2S_AngII), among which there were 109 differentially expressed miRNAs (DEMs) and 21 hub ADEGs (autophagy-related differentially expressed genes) in the AngII group and 70 DEMs and 13 ADEGs in the H2S_AngII group. A miRNA-mRNA-transcription factors (TFs) autophagy regulatory network was then constructed and verified in human hypertensive nephropathy samples and podocyte models. In the network, two DEMs (miR-98-5p, miR-669b-5p), some hub ADEGs (KRAS, NRAS), and one TF (RUNX2) were altered, accompanied by a reduction in autophagy flux. However, significant recovery occurred after treatment with endogenous or exogenous H2S donors, as well as an overexpression of miR-98-5p and miR-669b-5p. The miR/RAS/RUNX2 autophagy network driven by H2S donors was related to hypertensive nephropathy. H2S donors or miRNAs increased autophagic flux and reduced renal cell injury, which could be a potentially effective medical therapy.

5.
Pain Res Manag ; 2024: 6687987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39205668

RESUMEN

Background: Rheumatoid arthritis (RA) is one of the most common forms of arthritis. Extracorporeal shockwave therapy (ESWT) has been identified as a viable alternative therapeutic approach in light of the present protracted clinical course of pharmacological treatment, and changes in levels of marker proteins in the blood samples of RA patients can be utilized to assess treatment outcomes. Methods: A randomized controlled trial was conducted involving forty patients diagnosed with rheumatoid arthritis (RA) who were assigned randomly to two groups. The first group received a combination of diclofenac and methotrexate (MTX) consisting of 25 mg of diclofenac administered thrice daily and 15 mg of MTX administered once weekly. Individual follow-up assessments were carried out after 7 and 14 days. Meanwhile, patients in the second group underwent two sessions of Extracorporeal Shockwave Therapy (ESWT), with a 7-day interval between sessions. Evaluations were conducted on day 7 and day 14. Patients who displayed pain control and stability were advised to continue the treatment, whereas those who had inflammation and discomfort were administered specific medications, and their progress was closely monitored until day 28. Blood samples were collected from both groups prior to treatment, after the first treatment, and after the second treatment. Four marker proteins (NRP-1, CELF-6, COX-2, and RGS-1) and two inflammatory cytokines (IL-6 and IL-17) were measured using western blot and RT-PCR techniques. A statistical analysis was conducted on the levels of specific proteins and inflammatory factors before and after treatment to evaluate its impact. Result: Both groups exhibited statistically significant differences in the serum level of target biomarkers before and after the intervention. However, the ESWT group demonstrated a more noticeable effect, while the diclofenac + MTX group exhibited a delayed anti-inflammatory effect compared to ESWT. Conclusion: Both treatments significantly improved joint function, relieved pain, and reduced inflammation in patients. However, ESWT demonstrated a more prominent clinical analgesic effect compared to the combination treatment of diclofenac and MTX. Furthermore, ESWT produced a more immediate and noteworthy anti-inflammatory impact by regulating NRP-1 expression, a trophic factor receptor that facilitates vascular endothelial cell migration and tissue repair through angiogenesis, and regulating RGS-1 to limit inflammatory signal transmission and immune cell activation.


Asunto(s)
Artritis Reumatoide , Biomarcadores , Diclofenaco , Tratamiento con Ondas de Choque Extracorpóreas , Metotrexato , Humanos , Metotrexato/uso terapéutico , Metotrexato/administración & dosificación , Diclofenaco/uso terapéutico , Diclofenaco/administración & dosificación , Artritis Reumatoide/sangre , Artritis Reumatoide/terapia , Artritis Reumatoide/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Tratamiento con Ondas de Choque Extracorpóreas/métodos , Adulto , Biomarcadores/sangre , Antirreumáticos/uso terapéutico , Antirreumáticos/administración & dosificación , Resultado del Tratamiento , Antiinflamatorios no Esteroideos/uso terapéutico , Antiinflamatorios no Esteroideos/administración & dosificación , Terapia Combinada , Analgésicos/uso terapéutico , Anciano
6.
J Ovarian Res ; 17(1): 178, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217393

RESUMEN

Oocyte aging is a key constraint on oocyte quality, leading to fertilization failure and abnormal embryonic development. In addition, it is likely to generate unfavorable assisted reproductive technology (ART) outcomes. SCM-198, a synthetic form of leonurine, was found to rescue the rate of oocyte fragmentation caused by postovulatory aging. Therefore, the aim of this study was to conduct a more in-depth investigation of SCM-198 by exploring its relationship with aged oocytes after ovulation or maternal aging and clarifying whether it affects cell quality. The results indicate that, compared to the postovulatory aged group, the 50 µM SCM-198 group significantly improved sperm-egg binding and increased fertilization of aged oocytes, restoring the spindle apparatus/chromosome structure, cortical granule distribution, and ovastacin and Juno protein distribution. The 50 µM SCM-198 group showed significantly normal mitochondrial distribution, low levels of reactive oxygen species (ROS), and a small quantity of early oocyte apoptosis compared to the postovulatory aged group. Above all, in vivo supplementation with SCM-198 effectively eliminated excess ROS and reduced the spindle/chromosome structural defects in aged mouse oocytes. In summary, these findings indicate that SCM-198 inhibits excessive oxidative stress in oocytes and alters oocyte quality both in vitro and in vivo.


Asunto(s)
Ácido Gálico , Oocitos , Ovulación , Estrés Oxidativo , Especies Reactivas de Oxígeno , Oocitos/metabolismo , Oocitos/efectos de los fármacos , Animales , Estrés Oxidativo/efectos de los fármacos , Femenino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Ovulación/efectos de los fármacos , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Senescencia Celular/efectos de los fármacos , Apoptosis , Masculino
7.
Cancer Cell Int ; 24(1): 184, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802855

RESUMEN

BACKGROUND: Cancer-induced pre-metastatic niches (PMNs) play a decisive role in promoting metastasis by facilitating angiogenesis in distant sites. Evidence accumulates suggesting that microRNAs (miRNAs) exert significant influence on angiogenesis during PMN formation, yet their specific roles and regulatory mechanisms in gastric cancer (GC) remain underexplored. METHODS: miR-605-3p was identified through miRNA-seq and validated by qRT-PCR. Its correlation with the clinicopathological characteristics and prognosis was analyzed in GC. Functional assays were performed to examine angiogenesis both in vitro and in vivo. The related molecular mechanisms were elucidated using RNA-seq, immunofluorescence, transmission electron microscopy, nanoparticle tracking analysis, enzyme-linked immunosorbent assay, luciferase reporter assays and bioinformatics analysis. RESULTS: miR-605-3p was screened as a candidate miRNA that may regulate angiogenesis in GC. Low expression of miR-605-3p is associated with shorter overall survival and disease-free survival in GC. miR-605-3p-mediated GC-secreted exosomes regulate angiogenesis by regulating exosomal nitric oxide synthase 3 (NOS3) derived from GC cells. Mechanistically, miR-605-3p reduced the secretion of exosomes by inhibiting vesicle-associated membrane protein 3 (VAMP3) expression and affects the transport of multivesicular bodies to the GC cell membrane. At the same time, miR-605-3p reduces NOS3 levels in exosomes by inhibiting the expression of intracellular NOS3. Upon uptake of GC cell-derived exosomal NOS3, human umbilical vein endothelial cells exhibited increased nitric oxide levels, which induced angiogenesis, established liver PMN and ultimately promoted the occurrence of liver metastasis. Furthermore, a high level of plasma exosomal NOS3 was clinically associated with metastasis in GC patients. CONCLUSIONS: miR-605-3p may play a pivotal role in regulating VAMP3-mediated secretion of exosomal NOS3, thereby affecting the formation of GC PMN and thus inhibiting GC metastasis.

8.
Front Pharmacol ; 15: 1388747, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638866

RESUMEN

Siraitia grosvenorii (Swingle) C. Jeffrey (S. grosvenorii), a perennial indigenous liana from the Cucurbitaceae family, has historically played a significant role in southern China's traditional remedies for various ailments. Its dual classification by the Chinese Ministry of Health for both medicinal and food utility underscores its has the potential of versatile applications. Recent research has shed light on the chemical composition, pharmacological effects, and toxicity of S. grosvenorii. Its active ingredients include triterpenoids, flavonoids, amino acids, volatile oils, polysaccharides, minerals, vitamins, and other microconstituents. Apart from being a natural sweetener, S. grosvenorii has been found to have numerous pharmacological effects, including alleviating cough and phlegm, preventing dental caries, exerting anti-inflammatory and anti-allergic effects, anti-aging and anti-oxidative, hypoglycemic, lipid-lowering, anti-depression, anti-fatigue, anti-schizophrenic, anti-Parkinson, anti-fibrotic, and anti-tumor activities. Despite its versatile potential, there is still a lack of systematic research on S. grosvenorii to date. This paper aims to address this gap by providing an overview of the main active components, pharmacological efficacy, toxicity, current status of development and application, development dilemmas, and strategies for intensive exploitation and utilization of S. grosvenorii. This paper aims to serve as a guide for researchers and practitioners committed to exploiting the biological resources of S. grosvenorii and further exploring its interdisciplinary potential.

9.
Biomolecules ; 14(4)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38672467

RESUMEN

Inflammation is a pivotal factor in the development and advancement of conditions like NAFLD and asthma. Diet can affect several phases of inflammation and significantly influence multiple inflammatory disorders. Siraitia grosvenorii, a traditional Chinese edible and medicinal plant, is considered beneficial to health. Flavonoids can suppress inflammatory cytokines, which play a crucial role in regulating inflammation. In the present experiments, kaempferol 3-O-α-L-rhamnoside-7-O-ß-D-xylosyl(1→2)-O-α-L-rhamnoside (SGPF) is a flavonoid glycoside that was first isolated from S. grosvenorii. A series of experimental investigations were carried out to investigate whether the flavonoid component has anti-inflammatory and hepatoprotective effects in this plant. The researchers showed that SGPF has a stronger modulation of protein expression in LPS-induced macrophages (MH-S) and OA-induced HepG2 cells. The drug was dose-dependent on cells, and in the TLR4/NF-κB/MyD88 pathway and Nrf2/HO-1 pathway, SGPF regulated all protein expression. SGPF has a clear anti-inflammatory and hepatoprotective function in inflammatory conditions.


Asunto(s)
Antiinflamatorios , Flavonoides , Glicósidos , FN-kappa B , Receptor Toll-Like 4 , Humanos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Glicósidos/farmacología , Glicósidos/química , Flavonoides/farmacología , Flavonoides/química , Flavonoides/aislamiento & purificación , Células Hep G2 , Animales , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Cucurbitaceae/química , Ratones , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Lipopolisacáridos/farmacología , Hemo-Oxigenasa 1/metabolismo
10.
Cells ; 13(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38534334

RESUMEN

Histone deacetylase 6 (HDAC6) plays a crucial role in the acetylation of non-histone proteins and is notably implicated in angiogenesis, though its underlying mechanisms were previously not fully understood. This study conducted transcriptomic and proteomic analyses on vascular endothelial cells with HDAC6 knockdown, identifying endoglin (ENG) as a key downstream protein regulated by HDAC6. This protein is vital for maintaining vascular integrity and plays a complex role in angiogenesis, particularly in its interaction with bone morphogenetic protein 9 (BMP9). In experiments using human umbilical vein endothelial cells (HUVECs), the pro-angiogenic effects of BMP9 were observed, which diminished following the knockdown of HDAC6 and ENG. Western blot analysis revealed that BMP9 treatment increased SMAD1/5/9 phosphorylation, a process hindered by HDAC6 knockdown, correlating with reduced ENG expression. Mechanistically, our study indicates that HDAC6 modulates ENG transcription by influencing promoter activity, leading to increased acetylation of transcription factor SP1 and consequently altering its transcriptional activity. Additionally, the study delves into the structural role of HDAC6, particularly its CD2 domain, in regulating SP1 acetylation and subsequently ENG expression. In conclusion, the present study underscores the critical function of HDAC6 in modulating SP1 acetylation and ENG expression, thereby significantly affecting BMP9-mediated angiogenesis. This finding highlights the potential of HDAC6 as a therapeutic target in angiogenesis-related processes.


Asunto(s)
Células Endoteliales , Factor 2 de Diferenciación de Crecimiento , Humanos , Histona Desacetilasa 6/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Endoglina/metabolismo , Fosforilación , Células Endoteliales/metabolismo , Angiogénesis , Proteómica , Factores de Transcripción/metabolismo
11.
Front Genet ; 15: 1348387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544802

RESUMEN

Background: There is a growing body of evidence indicating a possible association between genetic variations and attention-deficit hyperactivity disorder (ADHD), although the results have been inconsistent. The objective of this study was to evaluate the correlation between the GRIN2A, GRIN2B and GRM7 gene polymorphisms and ADHD. Methods: A comprehensive meta-analysis and subgroup evaluation was conducted using a fixed-effects model to analyze the association between ADHD and GRIN2B (rs2284411), GRIN2A (rs2229193), and GRM7 (rs3792452) in six genetic models (dominant, recessive, overdominant, homozygous, heterozygous, and allele models). Results: The meta-analysis comprised 8 studies. The overall analysis showed that the GRIN2B rs2284411 T allele and T carries were significantly associated with a decreased risk of ADHD (dominant model:TT + CT vs. CC: OR = 0.783; 95% CI: 0.627-0.980; p = 0.032, allele model:T vs. C: OR = 0.795; 95% CI: 0.656-0.964; p = 0.019), especially in the Korean subgroup (dominant model:TT + CT vs. CC: OR = 0.640; 95% CI: 0.442-0.928; p = 0.019, overdominant model: CT vs. TT + CC: OR = 0.641; 95% CI: 0.438-0.938; p = 0.022, allele model:T vs. C: OR = 0.712; 95% CI: 0.521-0.974; p = 0.034 and heterozygous model: CT vs. CC: OR = 0.630; 95% CI: 0.429-0.925; p = 0.018). However, no meaningful associations were found for rs2229193 and rs3792452. Conclusion: The results of the meta-analysis provide strong evidence that the rs2284411 T allele is significantly associated with reduced susceptibility to ADHD, particularly in the Korean population.

12.
Phytomedicine ; 128: 155376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503152

RESUMEN

BACKGROUND: The apoptosis of pulmonary artery endothelial cells (PAECs) is an important factor contributing to the development of pulmonary hypertension (PH), a serious cardio-pulmonary vascular disorder. Salidroside (SAL) is a bioactive compound derived from an herb Rhodiola, but the potential protective effects of SAL on PAECs and the underlying mechanisms remain elusive. PURPOSE: The objective of this study was to determine the role of SAL in the hypoxia-induced apoptosis of PAECs and to dissect the underlying mechanisms. STUDY DESIGN: Male Sprague-Dawley (SD) rats were subjected to hypoxia (10% O2) for 4 weeks to establish a model of PH. Rats were intraperitoneally injected daily with SAL (2, 8, and 32 mg/kg/d) or vehicle. To define the molecular mechanisms of SAL in PAECs, an in vitro model of hypoxic cell injury was also generated by exposed PAECs to 1% O2 for 48 h. METHODS: Various techniques including hematoxylin and eosin (HE) staining, immunofluorescence, flow cytometry, CCK-8, Western blot, qPCR, molecular docking, and surface plasmon resonance (SPR) were used to determine the role of SAL in rats and in PAECs in vitro. RESULTS: Hypoxia stimulation increases AhR nuclear translocation and activates the NF-κB signaling pathway, as evidenced by upregulated expression of CYP1A1, CYP1B1, IL-1ß, and IL-6, resulting in oxidative stress and inflammatory response and ultimately apoptosis of PAECs. SAL inhibited the activation of AhR and NF-κB, while promoted the nuclear translocation of Nrf2 and increased the expression of its downstream antioxidant proteins HO-1 and NQO1 in PAECs, ameliorating the hypoxia-induced oxidative stress in PAECs. Furthermore, SAL lowered right ventricular systolic pressure, and decreased pulmonary vascular remodeling and right ventricular hypertrophy in hypoxia-exposed rats. CONCLUSIONS: SAL may attenuate the apoptosis of PAECs by suppressing NF-κB and activating Nrf2/HO-1 pathways, thereby delaying the progressive pathology of PH.


Asunto(s)
Apoptosis , Células Endoteliales , Hemo Oxigenasa (Desciclizante) , Arteria Pulmonar , Transducción de Señal , Animales , Masculino , Ratas , Apoptosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Glucósidos/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenoles/farmacología , Arteria Pulmonar/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo , Rhodiola/química , Transducción de Señal/efectos de los fármacos
13.
Pharmacol Res ; 201: 107100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38341055

RESUMEN

The development of natural products for potential new drugs faces obstacles such as unknown mechanisms, poor solubility, and limited bioavailability, which limit the broadened applicability of natural products. Therefore, there is a need for advanced pharmaceutical formulations of active compounds or natural products. In recent years, novel nano-drug delivery systems (NDDS) for natural products, including nanosuspensions, nanoliposomes, micelle, microemulsions/self-microemulsions, nanocapsules, and solid lipid nanoparticles, have been developed to improve solubility, bioavailability, and tissue distribution as well as for prolonged retention and enhanced permeation. Here, we updated the NDDS delivery systems used for natural products with the potential enhancement in therapeutic efficiency observed with nano-delivery systems.


Asunto(s)
Productos Biológicos , Sistemas de Liberación de Medicamentos , Sistema de Administración de Fármacos con Nanopartículas , Disponibilidad Biológica
14.
Lupus Sci Med ; 10(2)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993281

RESUMEN

OBJECTIVES: The study aims to investigate the impact of gene polymorphisms on blood hydroxychloroquine (HCQ) concentrations in patients with SLE and provide guidelines for individualised care. METHODS: 489 Chinese patients with SLE taking HCQ for more than 3 months were collected in this study. The blood HCQ, desethylhydroxychloroquine (DHCQ) and desethylchloroquine concentrations were measured. The optimal blood concentration of HCQ was determined by receiver operating characteristic curve analysis. Single nucleotide polymorphisms of metabolic enzymes involved in HCQ metabolism were genotyped and the associations with treatment effects were investigated. RESULTS: The cut-off value of HCQ was 559.67 ng/mL, with sensitivity and specificity values of 0.51 and 0.89, respectively. The TC and CC genotypes of CYP2C8 (rs7910936) were significantly related to the increase in blood HCQ concentrations, and the CYP2C8 (rs10882521) TT genotype was associated with lower blood HCQ concentrations. The DHCQ:HCQ ratio was highest in patients with the GG genotype of the CYP2D6*10 (rs1065852) polymorphism and lowest in those with the AA genotype. Patients with the CYP2C8 (rs7910936) CC genotype were more likely to achieve the optimal blood concentration (p=0.030) in HCQ 200 mg/day group and patients with the CYP2D6*10 (rs1065852) GG genotype were more likely to reach the optimal blood concentration (p=0.049) in 400 mg/day group. CONCLUSIONS: Our results suggest that the optimal blood concentration of HCQ measured approximately 12-18 hours after the last dosage may be between 500 and 600 ng/mL in Chinese patients with SLE. The observed variations in HCQ concentrations between individuals can potentially be attributed to genetic polymorphisms in CYP2D6*10 (rs1065852) and CYP2C8 (rs7910936 and rs10882521). Genotypical testing of patients and regular monitoring of blood levels are recommended for optimising HCQ dosage management in Chinese patients with SLE. TRIAL REGISTRATION NUMBER: ChiCTR2300070628.


Asunto(s)
Antirreumáticos , Lupus Eritematoso Sistémico , Humanos , Hidroxicloroquina/uso terapéutico , Antirreumáticos/uso terapéutico , Citocromo P-450 CYP2C8 , Citocromo P-450 CYP2D6/genética , Pueblos del Este de Asia , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Genotipo
15.
Front Pharmacol ; 14: 1224239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649888

RESUMEN

Introduction: Osteoarthritis (OA) is a prevalent joint disorder worldwide. Sodium hyaluronate (SH) and mesenchymal stem cells (MSCs) are promising therapeutic strategies for OA. Previous studies showed they could improve knee function and clinical symptoms of OA. However, the mechanism of the therapeutic effects on the improvement of OA has not been clearly explained. Methods: In our study, we used a technique called 5-(diisopropylamino)amylamine derivatization liquid chromatography coupled with mass spectrometry to find the metabolites in OA synovial fluid under different treatments. Results and Discussion: After looking into the metabolomics, we discovered that SH and MSC treatment led to the downregulation of ω-6 polyunsaturated fatty acids (PUFAs) and the upregulation of ω-3 PUFAs. Significantly, the contents of 5(S)-HETE, PGA2, PGB2, and PGJ2 were lower in the MSC group than in the SH group after quantification using 5-(diisopropylamino)amylamine derivatization-UHPLC-QQQ-MS. This is the first report on the relationship of 11(S)-HETE, PGA2, PGB2, PGF2ß, 11ß-PGF2α, and DK-PGE2 with OA. Moreover, the correlation analysis of metabolites and inflammation factors showed the positive association of ω-6 PUFAs with pro-inflammation cytokines, and of ω-3 PUFAs with anti-inflammation cytokines. Our results indicated the therapeutic effect of SH and MSCs in patients with OA. In addition, this reliable metabolic approach could uncover novel biomarkers to treat OA.

16.
Diabetes Res Clin Pract ; 203: 110869, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37562660

RESUMEN

AIMS: This study aimed to investigate the prevalence, characteristics, and influence factors of the at-risk foot with diabetes mellitus (DM). METHODS: This study included 3030 DM patients from the at-risk foot screening program of Shanghai in China between March 21 and April 30 in 2021. Data were collected from the questionnaire survey, physical examination, and fasting blood sample. RESULTS: The prevalence of at-risk foot was 27.8% among DM patients. After adjusted, the risk of higher at-risk grade increased with age and urinary albumin creatinine ratio (OR = 1.04, 95%CI = 1.02-1.06; OR = 1.001, 95%CI = 1.000-1.002, respectively), whereas decreased with estimated glomerular filtration rate (eGFR) (OR = 0.991, 95%CI = 0.984-0.998). The incidence of peripheral artery disease (PAD) was 11.1% in all people with DM, and age, pulse rate, and low-density lipoprotein were independent risk factors for PAD. In contrast, high-density lipoprotein, eGFR, and lymphocyte-to-monocyte ratio were independent protective factors for PAD. Glycated hemoglobin HbA1c was not an independent risk factor for increased risk grade or more severe PAD. CONCLUSIONS: The at-risk foot accounted for a high percentage among DM patients. Advanced age and renal dysfunction are independent risk factors for the at-risk foot. Glycemic control does not reduce the risk grade of at-risk foot and the incidence of PAD.

17.
Clin Rheumatol ; 42(12): 3213-3223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37488372

RESUMEN

OBJECTIVE: Rheumatoid arthritis is a systemic disease characterized by progressive chronic inflammation resulting in destruction of synovial joints. In addition to joint involvement, abnormal blood lipid indexes have also been found in RA patients. The correlation between various blood lipid indexes and the treatment effects were assessed in patients with rheumatoid arthritis, for the purposes to find a better medication strategy for RA. METHODS: One hundred nineteen rheumatoid arthritis patients were recruited and divided into two groups, 45 patients with significant drug treatment effect and 45 patients with insignificant drug treatment effect through the nearest neighbor matching method in propensity score. The correlation between various blood lipid indexes and drug treatment effect of rheumatoid arthritis patients was analyzed. A mouse model of rheumatoid arthritis was constructed in the laboratory; methotrexate was treated as a positive drug. We observe and record the onset of rheumatoid arthritis in mice, as well as the proportion of immune cells, the expression of inflammatory factors, and the changes in blood lipid profiles was done. RESULTS: The levels of total cholesterol (TC), triglyceride (TG), high density lipoprotein (HDL-C), low density lipoprotein (LDL-C), and erythrocyte sedimentation rate (ESR) in rheumatoid arthritis patients were significantly different between the two groups (P < 0.05). There was no significant difference in other indexes between the two groups (P > 0.05). Methotrexate had a good therapeutic effect on CIA model mice, and the levels of TC and HDL-C in the treatment group were higher than those in the model group. CONCLUSION: There is a high correlation between the levels of TC and HDL-C in rheumatoid arthritis patients and the effect of drug treatment. In the clinical treatment of rheumatoid arthritis, we should focus on improving the blood lipid indexes such as TC and HDL-C, and explore more targeted individualized administration, so as to achieve better and faster treatment effect in patients with rheumatoid arthritis. Key Points • In this research, we found that the TC and HDL-C level in RA patients' blood is highly related with the therapeutic effect, and a lower level of TC and HDL-C is better for therapeutic effect of RA.


Asunto(s)
Artritis Reumatoide , Metotrexato , Humanos , Animales , Ratones , Metotrexato/uso terapéutico , Estudios Retrospectivos , Lípidos , Lipoproteínas HDL , Resultado del Tratamiento , HDL-Colesterol
18.
Cell Rep ; 42(7): 112750, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37421623

RESUMEN

The present study examines whether there is a mechanism beyond the current concept of post-translational modifications to regulate the function of a protein. A small gas molecule, hydrogen sulfide (H2S), was found to bind at active-site copper of Cu/Zn-SOD using a series of methods including radiolabeled binding assay, X-ray absorption near-edge structure (XANES), and crystallography. Such an H2S binding enhanced the electrostatic forces to guide the negatively charged substrate superoxide radicals to the catalytic copper ion, changed the geometry and energy of the frontier molecular orbitals of the active site, and subsequently facilitated the transfer of an electron from the superoxide radical to the catalytic copper ion and the breakage of the copper-His61 bridge. The physiological relevance of such an H2S effect was also examined in both in vitro and in vivo models where the cardioprotective effects of H2S were dependent on Cu/Zn-SOD.


Asunto(s)
Cobre , Sulfuro de Hidrógeno , Cobre/metabolismo , Superóxido Dismutasa/metabolismo , Dominio Catalítico , Superóxidos , Zinc/metabolismo
19.
Nutrients ; 15(12)2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37375702

RESUMEN

Ancientino, a complex dietary fiber supplement mimicking the ancient diet, has improved chronic heart failure, kidney function, and constipation. However, its effect on ulcerative colitis is unknown. This study explores the impact of Ancientino on colitis caused by dextran sulfate sodium (DSS) and its mechanisms. Data analyses showed that Ancientino alleviated bodyweight loss, colon shortening and injury, and disease activity index (DAI) score, regulated levels of inflammatory factors (tumor necrosis factor-alpha (TNF-α), interleukin-10 (IL-10), interleukin-1 beta (IL-1ß), and interleukin 6 (IL-6)), reduced intestinal permeability (d-lactate and endotoxin), fluorescein isothiocyanate-dextran (FITC-dextran), and diamine oxidase (DAO), repaired colonic function (ZO-1 and occludin), and suppressed oxidative stress (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA)) in vivo and in vitro. In short, this study demonstrated that Ancientino alleviates colitis and exerts an anticolitis effect by reducing inflammatory response, suppressing oxidative stress, and repairing intestinal barrier function. Thus, Ancientino may be an effective therapeutic dietary resource for ulcerative colitis.


Asunto(s)
Colitis Ulcerosa , Colitis , Animales , Ratones , Colitis Ulcerosa/tratamiento farmacológico , Dextranos/uso terapéutico , Colitis/tratamiento farmacológico , Inflamación/metabolismo , Colon/metabolismo , Estrés Oxidativo , Interleucina-6/metabolismo , Suplementos Dietéticos , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
20.
Cell Mol Life Sci ; 80(6): 161, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219631

RESUMEN

BACKGROUND: Pressure overload-induced pathological cardiac hypertrophy is an independent predecessor of heart failure (HF), which remains the leading cause of worldwide mortality. However, current evidence on the molecular determinants of pathological cardiac hypertrophy is still inadequacy. This study aims to elucidate the role and mechanisms of Poly (ADP-ribose) polymerases 16 (PARP16) in the pathogenesis of pathological cardiac hypertrophy. METHODS: Gain and loss of function approaches were used to demonstrate the effects of genetic overexpression or deletion of PARP16 on cardiomyocyte hypertrophic growth in vitro. Ablation of PARP16 by transducing the myocardium with serotype 9 adeno-associated virus (AAV9)-encoding PARP16 shRNA were then subjected to transverse aortic construction (TAC) to investigate the effect of PARP16 on pathological cardiac hypertrophy in vivo. Co-immunoprecipitation (IP) and western blot assay were used to detect the mechanisms of PARP16 in regulating cardiac hypertrophic development. RESULTS: PARP16 deficiency rescued cardiac dysfunction and ameliorated TAC-induced cardiac hypertrophy and fibrosis in vivo, as well as phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro. Whereas overexpression of PARP16 exacerbated hypertrophic responses including the augmented cardiomyocyte surface area and upregulation of the fetal gene expressions. Mechanistically, PARP16 interacted with IRE1α and ADP-ribosylated IRE1α and then mediated the hypertrophic responses through activating the IRE1α-sXBP1-GATA4 pathway. CONCLUSIONS: Collectively, our results implicated that PARP16 is a contributor to pathological cardiac hypertrophy at least in part via activating the IRE1α-sXBP1-GATA4 pathway, and may be regarded as a new potential target for exploring effective therapeutic interventions of pathological cardiac hypertrophy and heart failure.


Asunto(s)
Insuficiencia Cardíaca , Ribosa , Humanos , Endorribonucleasas , Proteínas Serina-Treonina Quinasas , Cardiomegalia , Factor de Transcripción GATA4 , Poli(ADP-Ribosa) Polimerasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA