Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862485

RESUMEN

Semiconducting polymers inherently exhibit polydispersity in terms of molecular structure and microscopic morphology, which often results in a broad distribution of energy levels for localized electronic states. Therefore, the bulk charge mobility strongly depends on the free charge density. In this study, we propose a method to measure the charge-density-dependent bulk mobility of conjugated polymer films with widely spread localized states using a conventional field-effect transistor configuration. The gate-induced variation of bulk charge density typically ranges within ±1018 cm-3; however, this range depends significantly on the energetic dispersion width of localized states. The field-effect bulk mobility and field-effect mobility near the semiconductor-dielectric interface along with their dependence on charge density can be simultaneously extracted from the transistor characteristics using various gate voltage ranges.

2.
Mater Horiz ; 10(10): 4438-4451, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37489257

RESUMEN

Photonics neuromorphic computing shows great prospects due to the advantages of low latency, low power consumption and high bandwidth. Transistors with asymmetric electrode structures are receiving increasing attention due to their low power consumption, high optical response, and simple preparation technology. However, intelligent optical synapses constructed by asymmetric electrodes are still lacking systematic research and mechanism analysis. Herein, we present an asymmetric electrode structure of the light-stimulated synaptic transistor (As-LSST) with a bulk heterojunction as the semiconductor layer. The As-LSST exhibits superior electrical properties, photosensitivity and multiple biological synaptic functions, including excitatory postsynaptic currents, paired-pulse facilitation, and long-term memory. Benefitting from the asymmetric electrode configuration, the devices can operate under a very low drain voltage of 1 × 10-7 V, and achieve an ultra-low energy consumption of 2.14 × 10-18 J per light stimulus event. Subsequently, As-LSST implemented the optical logic function and associative learning. Utilizing As-LSST, an artificial neural network (ANN) with ultra-high recognition rate (over 97.5%) of handwritten numbers was constructed. This work presents an easily-accessible concept for future neuromorphic computing and intelligent electronic devices.

3.
Mater Horiz ; 10(9): 3269-3292, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37312536

RESUMEN

The investigation of transistor-based artificial synapses in bioinspired information processing is undergoing booming exploration, and is the stable building block for brain-like computing. Given that the storage and computing separation architecture of von Neumann construction is not conducive to the current explosive information processing, it is critical to accelerate the connection between hardware systems and software simulations of intelligent synapses. So far, various works based on a transistor-based synaptic system successfully simulated functions similar to biological nerves in the human brain. However, the influence of the semiconductor and the device structural design on synaptic properties is still poorly linked. This review concretely emphasizes the recent advances in the novel structure design of semiconductor materials and devices used in synaptic transistors, not only from a single multifunction synaptic device but also to system application with various connected routes and related working mechanisms. Finally, crises and opportunities in transistor-based synaptic interconnection are discussed and predicted.

4.
ACS Appl Mater Interfaces ; 15(9): 12099-12108, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36808932

RESUMEN

Although metal or oxide conductive films are widely used as electrodes of electronic devices, organic electrodes would be more favorable for next-generation organic electronics. Here, using some model conjugated polymers as examples, we report a class of highly conductive and optically transparent polymer ultrathin layers. Vertical phase separation of semiconductor/insulator blends leads to a highly ordered two-dimensional (2D) ultrathin layer of conjugated-polymer chains on the insulator. Afterwards, the thermally evaporated dopants on the ultrathin layer lead to a conductivity of up to 103 S cm-1 and a sheet resistance 103 Ω/square for a model conjugated polymer poly(2,5-bis(3-hexadecylthiophen-2-yl)thieno[3,2-b]thiophenes) (PBTTT). The high conductivity is due to the high hole mobility (∼ 20 cm2 V-1 s-1), although doping-induced charge density is still in the moderate range of 1020 cm-3 with a 1 nm thick dopant. Metal-free monolithic coplanar field-effect transistors using the same conjugated-polymer ultrathin layer with alternatively doped regions as electrodes and a semiconductor layer are realized. The field-effect mobility of this monolithic transistor is over 2 cm2 V-1 s-1 for PBTTT, one order higher than that of the conventional PBTTT transistor using metal electrodes. The optical transparency of the single conjugated-polymer transport layer is over 90%, demonstrating a bright future for all-organic transparent electronics.

5.
Sci Rep ; 13(1): 627, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635399

RESUMEN

Variations in fertility and synchronization information is fundamental to seed orchard management. Our objective was to determine clonal variation and stability in strobili production, phenology, synchronization, and seed production in two generation clonal seed orchards (CSO) of Chinese fir. The number of female and male strobili and the phenology of 42 clones in both the 2.0- and 2.5-generation clonal seed orchards were investigated and recorded to calculate the variation and stability of fertility and synchronization. In both seed orchards, an obvious variation in gamete contribution was found among clones, indicating deviation from random mating. Female receptivity was in the pollen shedding stage, which is favorable to pollination. However, low synchronization (mean POij = 0.283) between clones indicated low overlap between female receptivity and pollen shedding. A higher POij value within clones than within outcrossing combinations indicated a high risk of selfing in two seed orchards, particularly for early- and late-flowering clones. The number of female strobili and POij (as female) significantly influence seed production. Overall, fertility and synchronization variation had notable consequences for seed production. Scientific genetic management is indispensable for promoting fertility uniformity and synchronization to obtain maximal genetic gain.


Asunto(s)
Cunninghamia , Fertilidad/genética , Reproducción/genética , Polinización , Semillas/genética , Células Clonales
6.
Polymers (Basel) ; 15(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231898

RESUMEN

Electrical breakdown is an important physical phenomenon in power equipment and electronic devices. Recently, the mechanism of AC and DC breakdown has been preliminarily revealed as electrode-dielectric interface breakdown and bulk breakdown, respectively, based on space charge dynamics through numerical calculations. However, the AC breakdown mechanism still lacks enough direct experimental support, which restricts further understanding and the design and development of electrical structures. Here, in this study, LDPE films with various thicknesses ranging from 33 µm to 230 µm were surface modified with ozone for different durations to experimentally investigate DC and AC breakdown mechanism. The results indicate that carbonyl groups (C=O) were introduced onto the film surface, forming shallow surface traps and leading to a decreased average trap depth and an increased trap density. Such a surface oxidation modulated trap distribution led to enhanced space charge injection and bulk electrical field distortion, which decreased DC breakdown strength as the oxidation duration went longer, in all film thicknesses. However, such decreases in breakdown strength occurred only in films below 55 µm under AC stresses, as the enhanced electrical field distortion at the electrode-dielectric interface was more obvious and dominating in thin films. These experimental results further confirm the proposed electrode-dielectric interface breakdown of dielectric films and provide new understandings of space charge modulated electrical breakdown, which fulfills dielectric breakdown theory and benefits the miniaturization of power equipment and electronic devices.

7.
ACS Appl Mater Interfaces ; 14(43): 48948-48959, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36269162

RESUMEN

The advancement of self-powered intelligent strain systems for human-computer interaction is crucial toward wearable and energy-saving applications. Simultaneously, lowering operating voltage and thus reducing power consumption are of particular interests. A brain-like smart synaptic hardware system is considered as a promising candidate for low-power, parallel computing and learning processes. However, the combination of low-voltage organic transistors and energy efficient smart synapse hardware systems driven by a tactile signal has been hindered by the limited materials and technology. Here, by employing an elastomeric copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) with a high HFP content of 25 mol %, flexible, low-voltage transistors (|VG| ≤ 3 V) and a low energy consumption synapse ≤ 9.2 × 10-17 J are devised simultaneously, along with the lowest quality factor (R = Pw × VG, 2.76 × 10-16 J V). Furthermore, based on the low voltage and low power consumption characteristics, flexible artificial tactile recognition system and Morse code recognition are established without any computing supporting. Mechanical flexibility, cycling stability, image contrast enhancement functions, and simulated pattern recognition accuracy of the multilayer perceptron neural network are also simulated. This work recommends a route of exploiting low voltage, low power consumption synaptic systems and smart human-machine interfaces with low energy loss based on flexible organic synaptic transistors.


Asunto(s)
Electrónica , Tacto , Humanos , Sinapsis , Redes Neurales de la Computación , Encéfalo
8.
Materials (Basel) ; 15(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36079476

RESUMEN

Gradually increasing power transmission voltage requires an improved high-voltage capability of polymeric insulating materials. Surface modification emerges as an easily accessible approach in enhancing breakdown and flashover performances due to the widely acknowledged modification of space-charge behaviors. However, as oxidation and fluorination essentially react within a limited depth of 2 µm underneath polymer surfaces, the nature of such bulk space-charge modulation remains a controversial issue, and further investigation is needed to realize enhancement of insulating performance. In this work, the surface oxidation-dependent space-charge accumulation in LDPE film was found to be dominated by an electrode/polymer interfacial barrier, but not by the generation of bulk charge traps. Through quantitative investigation of space-charge distributions along with induced electric field distortion, the functions of surface oxidation on the interfacial barrier of a typical dielectric polymer, LDPE, is discussed and linked to space-charge behaviors. As the mechanism of surface modification on space-charge behaviors is herein proposed, space-charge accumulation can be effectively modified by selecting an appropriate surface modification method, which consequentially benefits breakdown and flashover performances of polymeric insulating films for high-voltage applications.

9.
Rev Sci Instrum ; 93(7): 073903, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35922326

RESUMEN

During the deposition and post-treatments of organic films, phase separation along the film-depth direction is a commonly observed phenomenon. Thus, film-depth profilometry of organic thin films and the corresponding scientific instruments are attracting extensive interest. Here, we propose spectroscopic film-depth profilometry of organic thin films upon inductively coupled plasma etching. Compared with capacitively coupled plasma, which usually generates inhomogeneous filamentous discharge, damaging films underneath the etched surface, inductively coupled plasma studied in this work refers to a so-called soft plasma source generated by a well-defined homogenous glow discharge. The absorption spectra of the etched films are monitored by using a spectrometer, from which the film-depth-dependent light absorption spectra are, thus, numerically obtained with a film-depth resolution better than 1 nm. This methodology is available not only for non-conjugated molecules but also for conjugated organic semiconductors, which are usually known as unstable materials for many ionic plasma sources. Organic films for solar cells and field-effect transistors are investigated as model materials to demonstrate the applications of this depth profilometry.

10.
Artículo en Inglés | MEDLINE | ID: mdl-35548972

RESUMEN

Organic field-effect transistors (OFETs) are attractive for next-generation electronics, while doping plays an important role in their performance optimization. In this work, a soluble molecular dopant with high electron affinity, CN6-CP, is investigated to manipulate the performance of OFETs with a p-type organic semiconductor as the transport layer. The performance of the model 2,7-didodecyl[1]benzothieno[3,2-b][1]benzothiophene (C12-BTBT) bottom-gate top-contact (BGTC) OFETs is greatly optimized upon doping by CN6-CP, and the field-effect mobility is improved from 5.5 to 11.1 cm2 V-1 s-1, with a widely tunable threshold voltage from -40 to +5 V. Improvements in performance also appear in CN6-CP doped BGBC OFETs. As compared with commonly used molecular dopant F4-TCNQ, CN6-CP exhibits excellent doping effects and great potential for organic electronic applications.

11.
Mater Horiz ; 8(5): 1461-1471, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846454

RESUMEN

Organic thin films are widely used in organic electronics and coatings. Such films often feature film-depth dependent variations of composition and optoelectronic properties. State-of-the-art depth profiling methods such as mass spectroscopy and photoelectron spectroscopy rely on non-intrinsic species (vaporized ions, etching-induced surface defects), which are chemically and functionally different from the original materials. Here we introduce an easily-accessible and generally applicable depth profiling method: film-depth-dependent infrared (FDD-IR) spectroscopy profilometry based on directly measuring the intrinsic material after incremental surface-selective etching by a soft plasma, to study the material variations along the surface-normal direction. This depth profiling uses characteristic vibrational signatures of the involved compounds, and can be used for both conjugated and non-conjugated, neutral and ionic materials. A film-depth resolution of one nanometer is achieved. We demonstrate the application of this method for investigation of device-relevant thin films, including organic field-effect transistors and organic photovoltaic cells, as well as ionized dopant distributions in doped semiconductors.

12.
Materials (Basel) ; 14(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34640298

RESUMEN

Power equipment operates under high voltages, inducing space charge accumulation on the surface of key insulating structures, which increases the risk of discharge/breakdown and the possibility of maintenance workers experiencing electric shock accidents. Hence, a visualized non-equipment space charge detection method is of great demand in the power industry. Typical electrochromic phenomenon is based on redox of the material, triggered by a voltage smaller than 5 V with a continuous current in µA~mA level, which is not applicable to high electric fields above 106 V/m with pA~nA operation current in power equipment. Until now, no naked-eye observation technique has been realized for space charge detection to ensure the operation of power systems as well as the safety of maintenance workers. In this work, a viologen/poly(vinylidene fluoride-co-hexafluoropropylene)(P(VDF-HFP)) composite is investigated from gel to insulating bulk configurations to achieve high-voltage electrical-insulating electrochromism. The results show that viologen/P(VDF-HFP) composite bulk can withstand high electric fields at the 107 V/m level, and its electrochromism is triggered by space charges. This electrochromism phenomenon can be visually extended by increasing viologen content towards 5 wt.% and shows a positive response to voltage amplitude and application duration. As viologen/P(VDF-HFP) composite bulk exhibits a typical electrical insulating performance, it could be attached to the surface of insulating structures or clamped between metal and insulating materials as a space charge accumulation indicator in high-voltage power equipment.

13.
J Phys Chem Lett ; 11(5): 1881-1889, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32058721

RESUMEN

The dielectric strength of cellulose-liquid composites is always about several times higher than that of the cellulose paper and insulating liquids. However, this experimental phenomenon has not yet been demonstrated theoretically. Herein, the spectra characterization, molecular simulation, and wave function analysis method provide a new insight that the role of nanoscale interfacial adsorption of cellulose-liquid is exclusive for composites affecting the charge separation and producing the deep-level traps to seriously hinder electromigration under an electric field, which is responsible for the difference in dielectric strength. Meanwhile, the π conjugation and σ-π hyperconjugation effects enhance the electrical stability of aromatic hydrocarbon insulating liquids. In conclusion, interfacial trap theory can be used to explain the correlation of dielectric strength between cellulose-liquid composites and cellulose paper or dielectric liquids. It can be expected that materials with high dielectric strength can be manufactured according to the fundamental study of interfacial trap theory.

14.
Sci Rep ; 6: 32588, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27599577

RESUMEN

Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20(th) century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...