Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14880, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937561

RESUMEN

Loess structure is the physical key factor that determines its stability and consists of macro-pores, loose texture, and water sensitivity. The structural change characteristics and effects of the undisturbed loess before and after water infiltration are studied using mechanical CT and simulation tests in order to study the structural change process within the undisturbed loess caused by water infiltration. The change in particle state is as follows: the peak frequency point of the equivalent diameter of the loess particles after infiltration ranged from 16.75 to 23.76 µm, and the eroded fine particles consisted primarily of fine particles. The smaller loess particles are removed by water infiltration resulting in coarsening of soil particles. The sphericity of the loess particles gradually changes from spherical pores to angular and dendritic pores. The particle inclination angle transitions to a range greater than 70°, and its proportion is approximately 61%. The change in pore structure is as follows: The loess porosity after infiltration increased by approximately 20%, and the increase in the pore area ratio of the mesopores and the macropores was higher than that of the micropores. Additionally, the small pores increased by more than 5 times the original state of the undisturbed loess. The connected pores expanded less than 60% of the initial state to more than 90% after infiltration, thus, increasing the dominant seepage channel of the undisturbed loess. These changes in particle and porosity further increase the water filtration intensity and promote the migration of fine particles (mainly silt particles), linking loess catastrophes and are the leading cause of loess settlement and slope instability. The process of water infiltration into the loess, the mechanism of loess collapsibility, and the influence of salinity on the loess structure and strength are discussed in this study.

2.
Polymers (Basel) ; 14(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35890639

RESUMEN

Loess has strong water sensitivity, strong collapsibility, and low strength resulting in failures such as landslides, due to its loose structure. In order to improve the loess characteristics and to better meet the needs of engineering, a colorless, transparent, and permeable composite material is proposed in this paper. Water stability, erosion, unconfined compression, and triaxial tests were conducted to investigate the change of the strength properties and soil erosion resistance. The water sensitivity and strength properties of the loess are significantly improved as the stabilizer concentration increases. When scoured for 20 min, the erosion rates of the reinforced and the unreinforced soil were 95% and 6.25%, respectively, and demonstrated a 15.12 times reduction in erosion rates. The optimal concentration of the mixed solution is 0.6%. The triaxial test, CT, and SEM scanning tests were used to reveal the intrinsic mechanisms. The results demonstrated that the internal friction angle of the reinforced soil increases from 28.09° to 30.57°, and the cohesion changes from 25 kPa to 37.4 kPa. A large number of pores with a diameter of 900-1000 µm are reduced to 0-200 µm, and some pores with a length greater than 600 µm reduce to a length of less than 200 µm; The agglomeration and cementation, the filling of pores, and the formation of membrane structures have contributed greatly to the improvement of loess properties. Furthermore, the newly composite material has significant application potential needed to stabilize soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...