Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
2.
Int Immunopharmacol ; 138: 112618, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996663

RESUMEN

Toxoplasma gondii is a successful parasite capable of infecting a wide range of warm-blooded animals, including people, livestock, and wildlife. In individuals with intact immune function, T. gondii can invade the host brain tissue by altering the blood-brain barrier permeability, leading to chronic infection. Proteins play crucial regulatory roles in disease progression. By monitoring changes in proteins, a deeper understanding of the molecular mechanisms underlying host resistance to infection and the potential pathogenic mechanisms of pathogens can be gained. This study analyzed differential protein expression and associated signaling pathways in mouse brain tissues during acute and chronic T. gondii infection using proteomic and bioinformatics methods. The results showed that during acute and chronic T. gondii infection stages, 74 and 498 differentially expressed proteins (DEPs) were identified in mouse brain tissue, respectively. Among them, 45 and 309 were up-regulated, while 29 and 189 were down-regulated. GO and KEGG analyses revealed that some of these DEPs were implicated in host immunity, pathogen immune evasion, and T. gondii invasion of the central nervous system, particularly interleukin production and secretion, complement system activation, and alterations in tight junction pathways. Notably, the upregulation of Rab13 was identified as a potential molecular mechanism for T. gondii to regulate blood-brain barrier permeability and facilitate central nervous system invasion. Our findings provided fundamental data for understanding host control of Toxoplasmosis infection and offered new insights into parasite immune evasion and invasion mechanisms within the central nervous system. These insights are crucial for developing strategies to prevent the establishment of chronic T. gondii infection.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Proteómica , Toxoplasma , Animales , Toxoplasma/inmunología , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/parasitología , Barrera Hematoencefálica/inmunología , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/inmunología , Femenino , Toxoplasmosis Animal/inmunología , Toxoplasmosis Animal/parasitología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Transducción de Señal
3.
Parasit Vectors ; 17(1): 247, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835064

RESUMEN

BACKGROUND: The interplay between Toxoplasma gondii infection and tumor development is intriguing and not yet fully understood. Some studies showed that T. gondii reversed tumor immune suppression, while some reported the opposite, stating that T. gondii infection promoted tumor growth. METHODS: We created three mouse models to investigate the interplay between T. gondii and tumor. Model I aimed to study the effect of tumor growth on T. gondii infection by measuring cyst number and size. Models II and III were used to investigate the effect of different stages of T. gondii infection on tumor development via flow cytometry and bioluminescent imaging. Mouse strains (Kunming, BALB/c, and C57BL/6J) with varying susceptibilities to tumors were used in the study. RESULTS: The size and number of brain cysts in the tumor-infected group were significantly higher, indicating that tumor presence promotes T. gondii growth in the brain. Acute T. gondii infection, before or after tumor cell introduction, decreased tumor growth manifested by reduced bioluminescent signal and tumor size and weight. In the tumor microenvironment, CD4+ and CD8+ T cell number, including their subpopulations (cytotoxic CD8+ T cells and Th1 cells) had a time-dependent increase in the group with acute T. gondii infection compared with the group without infection. However, in the peripheral blood, the increase of T cells, including cytotoxic CD8+ T cells and Th1 cells, persisted 25 days after Lewis lung carcinoma (LLC) cell injection in the group with acute T. gondii. Chronic T. gondii infection enhanced tumor growth as reflected by increase in tumor size and weight. The LLC group with chronic T. gondii infection exhibited decreased percentages of cytotoxic CD8+ T cells and Th1 cells 25 days post-LLC injection as compared with the LLC group without T. gondii infection. At week 4 post-LLC injection, chronic T. gondii infection increased tumor formation rate [odds ratio (OR) 1.71] in both KM and BALB/c mice. CONCLUSIONS: Our research elucidates the dynamics between T. gondii infection and tumorigenesis. Tumor-induced immune suppression promoted T. gondii replication in the brain. Acute and chronic T. gondii infection had opposing effects on tumor development.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Toxoplasma , Animales , Ratones , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Toxoplasmosis/parasitología , Femenino , Linfocitos T CD8-positivos/inmunología , Encéfalo/parasitología , Encéfalo/patología , Enfermedad Crónica , Microambiente Tumoral , Neoplasias/parasitología , Enfermedad Aguda
4.
Parasit Vectors ; 17(1): 252, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858789

RESUMEN

BACKGROUND: Toxoplasma gondii is an intracellular protozoan parasite that is widely distributed in humans and warm-blooded animals. T. gondii chronic infections can cause toxoplasmic encephalopathy, adverse pregnancy, and male reproductive disorders. In male reproduction, the main function of the testis is to provide a stable place for spermatogenesis and immunological protection. The disorders affecting testis tissue encompass abnormalities in the germ cell cycle, spermatogenic retardation, or complete cessation of sperm development. However, the mechanisms of interaction between T. gondii and the reproductive system is unclear. The aims were to study the expression levels of genes related to spermatogenesis, following T. gondii infection, in mouse testicular tissue. METHODS: RNA-seq sequencing was carried out on mouse testicular tissues from mice infected or uninfected with the T. gondii type II Prugniaud (PRU) strain and validated in combination with real-time quantitative PCR and immunofluorescence assays. RESULTS: The results showed that there were 250 significant differentially expressed genes (DEGs) (P < 0.05, |log2fold change| â‰§ 1). Bioinformatics analysis showed that 101 DEGs were annotated to the 1696 gene ontology (GO) term. While there was a higher number of DEGs in the biological process classification as a whole, the GO enrichment revealed a significant presence of DEGs in the cellular component classification. The Arhgap18 and Syne1 genes undergo regulatory changes following T. gondii infection, and both were involved in shaping the cytoskeleton of the blood-testis barrier (BTB). The number of DEGs enriched in the MAPK signaling pathway, the ERK1/2 signaling pathway, and the JNK signaling pathway were significant. The PTGDS gene is located in the Arachidonic acid metabolism pathway, which plays an important role in the formation and maintenance of BTB in the testis. The expression of PTGDS is downregulated subsequent to T. gondii infection, potentially exerting deleterious effects on the integrity of the BTB and the spermatogenic microenvironment within the testes. CONCLUSIONS: Overall, our research provides in-depth insights into how chronic T. gondii infection might affect testicular tissue and potentially impact male fertility. These findings offer a new perspective on the impact of T. gondii infection on the male reproductive system.


Asunto(s)
Testículo , Toxoplasma , Toxoplasmosis Animal , Transcriptoma , Animales , Masculino , Ratones , Testículo/parasitología , Testículo/metabolismo , Toxoplasma/genética , Toxoplasmosis Animal/parasitología , Espermatogénesis/genética , Perfilación de la Expresión Génica , Enfermedad Crónica , Biología Computacional
5.
Int Med Case Rep J ; 17: 471-477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774710

RESUMEN

Background: Fat overload syndrome is a rare and severe adverse reaction triggered by the infusion of a single source of lipid emulsion, resulting in elevated blood triacylglycerol (TG) levels. The majority of literature reports focus on cases of fat overload syndrome in patients with mild symptoms. This case is significant because it demonstrates the diagnostic and therapeutic experience and provide valuable insights for the management for severe fat overload syndrome. Case Presentation: We present a case report of a female patient who developed fat overload syndrome following prolonged and excessive infusion of lipid emulsion after colon resection surgery. In the setting of compromised immune function and malnutrition, the patient's pulmonary infection and respiratory distress symptoms have further exacerbated. Hence, in addition to severe pancreatitis, the patient has also contracted severe pneumonia. Upon admission, tracheal intubation, plasma exchange and blood perfusion were performed. Subsequently, comprehensive treatment was provided, including anti-infection, antispasmodic, acid suppression, enzyme inhibition, as well as targeted supportive measures to stabilize electrolytes and nutritional status. After treatment, there was a progressive reduction in blood lipid levels. After assessing the relevant risks, it was deemed necessary to perform an emergency computed tomography (CT)-guided percutaneous drainage tube placement procedure targeting the necrotic area of the pancreas while the patient was still intubated. Finally, the patient was discharged from the hospital. Conclusion: The case highlights the association between fat overload syndrome and pancreatitis as well as the use of lipid emulsions and suggests the treatment strategies for severe fat overload syndrome.

6.
Front Cell Infect Microbiol ; 14: 1381537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633748

RESUMEN

Background: Toxoplasma gondii (T. gondii) is a significant protozoan pathogen among food animals. Despite the threat to public health by T. gondii infections, there's limited understanding of its seroprevalence and trends in food animals across mainland China. This study aimed to estimate the seroprevalence of T. gondii infections among swine, sheep, goats, chickens, and cattle in mainland China from 2010 to 2023. Methods: We searched cross-sectional studies published between 2010 and 2023 that reported the prevalence of T. gondii in food animals from databases including PubMed, Embase, Web of Science, China Biology Medicine Disc (CBM), China National Knowledge Infrastructure (CNKI), Wanfang data, and the China Science and Technology Journal Database (CQVIP). We performed subgroup analyses to explore the impact of different factors on the seroprevalence of T. gondii. Pooled estimates of T. gondii seroprevalence were calculated with a random-effects model. Results: An analysis of 184 studies involving 211985 animals revealed a T. gondii overall seroprevalence of 15.3% (95% CI: 13.1-17.8). Although the seroprevalence of food animals across mainland China was relatively stable from 2010 to 2023, notable variations were observed across different animal types and regions (P < 0.01), along with changes in geographical distribution. Sample type, detection method, animal age, and history of abortion were identified as key risk factors for T. gondii seroprevalence. Conclusion: The study conducted a meta-analysis on the seroprevalence of T. gondii in mainland China's Food Animals from 2010 to 2023, and identified key risk factors. These findings advance our understanding of T. gondii infection dynamics, offering critical insights for developing control strategies and guiding public health policies.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Embarazo , Femenino , Animales , Porcinos , Bovinos , Ovinos , Estudios Seroepidemiológicos , Estudios Transversales , Pollos , Factores de Riesgo , China/epidemiología , Cabras , Anticuerpos Antiprotozoarios
7.
Pest Manag Sci ; 80(6): 2689-2697, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38327015

RESUMEN

BACKGROUND: RNA interference (RNAi) is the sequence-dependent suppression of gene expression by double-stranded RNA (dsRNA). This is a promising strategy for the control of insect pests because dsRNA can be rationally designed to maximize efficacy and biosafety, the latter by using sequences that are found in target pests but are safe for non-target insects. However, this has yet to be optimized in aphids, destructive sap-sucking pests that also transmit plant viruses. We used the green peach aphid (Myzus persicae) as a case study to optimize the efficiency of RNAi by applying a novel fusion dsRNA design. RESULTS: Comparative transcriptomics revealed a number of genes that are induced in feeding aphids, and eight candidate genes were chosen as RNAi targets. To improve RNAi efficiency, our fusion dsRNA design approach combined optimal gene fragments (highly conserved in several aphid species but with less homology in beneficial insects such as the predator ladybeetle Propylea japonica) from three candidate genes. We compared this RNAi-based biological control approach with conventional chemical control using imidacloprid. We found that the fusion dsRNA strategy inhibited the aphid population to a significantly greater extent than single-target RNAi and did not affect ladybeetle fitness, allowing an additive effect between RNAi and natural predation, whereas imidacloprid was harmful to aphids and ladybeetles. CONCLUSION: Our fusion dsRNA design approach enhances the ability of RNAi to control aphids without harming natural predators. © 2024 Society of Chemical Industry.


Asunto(s)
Áfidos , Interferencia de ARN , ARN Bicatenario , Áfidos/genética , Animales , ARN Bicatenario/genética , Escarabajos/genética , Control Biológico de Vectores/métodos , Control de Insectos/métodos , Neonicotinoides/farmacología , Nitrocompuestos/farmacología
8.
Curr Med Sci ; 44(1): 156-167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38302780

RESUMEN

OBJECTIVE: Anthracycline-containing regimens are irreplaceable in neoadjuvant chemotherapy (NAC) for breast cancer (BC) at present. However, 30% of early breast cancer (EBC) patients are resistant to anthracycline-containing chemotherapy, leading to poor prognosis and higher mortality. Ki-67 is associated with the prognosis and response to therapy, and it changes after NAC. METHODS: A total of 105 BC patients who received anthracycline-containing NAC were enrolled. Then, the optimal model of Ki-67 was selected, and its predictive efficacy was analyzed. Immunohistochemistry (IHC) was used to determine the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER-2) status and Ki-67 level. Fluorescent in situ hybridization (FISH) was used to verify the HER-2 when the IHC score was 2+. RESULTS: The post-NAC Ki67 level after treatment with anthracycline drugs was lower than pre-NAC Ki-67 (19.6%±23.3% vs. 45.6%±23.1%, P<0.001). Furthermore, patients with the Ki-67 decrease had a border line higher pathological complete response (pCR) rate (17.2% vs. 0.0%, P=0.068), and a higher overall response rate (ORR) (73.6% vs. 27.8%, P<0.001), when compared to patients without the Ki-67 decrease. The ΔKi-67 and ΔKi-67% were valuable markers for the prediction of both the pCR rate and ORR. The area under the curve (AUC) for ΔKi-67 on pCR and ORR was 0.809 (0.698-0.921) and 0.755 (0.655-0.855), respectively, while the AUC for ΔKi-67% on pCR and ORR was 0.857 (0.742-0.972) and 0.720 (0.618-0.822), respectively. Multivariate logistic regression model 1 revealed that ΔKi-67 was an independent predictor for both pCR [odds ratio (OR)=61.030, 95% confidence interval (CI)=4.709-790.965; P=0.002] and ORR (OR=10.001, 95% CI: 3.044-32.858; P<0.001). Multivariate logistic regression model 2 revealed that ΔKi-67% was also an independent predictor for both pCR (OR=408.922, 95% CI=8.908-18771.224; P=0.002) and ORR (OR=5.419, 95% CI=1.842-15.943; P=0.002). CONCLUSIONS: The present study results suggest that ΔKi67 and ΔKi67% are candidate predictors for anthracycline-containing NAC response, and that they may provide various information for further systematic therapy after surgery in clinical practice.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Antígeno Ki-67/genética , Terapia Neoadyuvante , Hibridación Fluorescente in Situ , Antraciclinas/uso terapéutico
9.
Insect Sci ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38196174

RESUMEN

Aphids, the important global agricultural pests, harbor abundant resources of symbionts that can improve the host adaptability to environmental conditions, also control the interactions between host aphid and natural enemy, resulting in a significant decrease in efficiency of biological control. The facultative symbiont Serratia symbiotica has a strong symbiotic association with its aphid hosts, a relationship that is known to interfere with host-parasitoid interactions. We hypothesized that Serratia may also influence other trophic interactions by interfering with the physiology and behavior of major predators to provide host aphid defense. To test this hypothesis, we investigated the effects of Serratia on the host aphid Acyrthosiphon pisum and its predator, the ladybeetle Propylaea japonica. First, the prevalence of Serratia in different A. pisum colonies was confirmed by amplicon sequencing. We then showed that harboring Serratia improved host aphid growth and fecundity but reduced longevity. Finally, our research demonstrated that Serratia defends aphids against P. japonica by impeding the predator's development and predation capacity, and modulating its foraging behavior. Our findings reveal that facultative symbiont Serratia improves aphid fitness by disrupting the predation strategy of ladybeetle larvae, offering new insight into the interactions between aphids and their predators, and providing the basis of a new biological control strategy for aphid pests involving the targeting of endosymbionts.

10.
Int Immunopharmacol ; 126: 111227, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37977067

RESUMEN

BACKGROUND: Despite EIF5A upregulation related to tumor progression in LUAD (lung adenocarcinoma), the underlying mechanisms remain elusive. In addition, there are few comprehensive analyses of EIF5A in LUAD. METHODS: We investigated the EIF5A expression level in LUAD patients using data from the TCGA and GEO databases. We employed qRT-PCR and western blot to verify EIF5A expression in cell lines, while immunohistochemistry was utilized for clinical sample analysis. We analyzed EIF5A expression in tumor-infiltrating immune cells using the TISCH database and assessed its association with immune infiltration in LUAD using the "ESTIMATE" R package. Bioinformatics approaches were developed to discover the EIF5A-related genes and explore EIF5A potential mechanisms in LUAD. Proliferation ability was verified through CCK-8, clone formation, and EdU assays, while flow cytometry assessed apoptosis and cell cycle. Western blot was used to detect the expression of pathway-related proteins. RESULTS: EIF5A was significantly upregulated in LUAD. Moreover, we constructed a MAZ-hsa-miR-424-3p-EIF5A transcriptional network. We explored the potential mechanism of EIF5A in LUAD and further investigated the cAMP signaling pathway and the cell cycle. Finally, we proved that EIF5A silencing induced G1/S Cell Cycle arrest, promoted apoptosis, and inhibited proliferation via the cAMP/PKA/CREB signaling pathway. CONCLUSION: EIF5A serves as a prognostic biomarker with a negative correlation to immune infiltrates in LUAD. It regulated the cell cycle in LUAD by inhibiting the cAMP/PKA/CREB signaling pathway.


Asunto(s)
Adenocarcinoma del Pulmón , Factor 5A Eucariótico de Iniciación de Traducción , Neoplasias Pulmonares , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Factor 5A Eucariótico de Iniciación de Traducción/metabolismo , Biomarcadores de Tumor/metabolismo , Adenocarcinoma del Pulmón/diagnóstico , Adenocarcinoma del Pulmón/inmunología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/inmunología , Puntos de Control del Ciclo Celular , Apoptosis , Proliferación Celular , Transducción de Señal , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA