Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 20(4): 4352-9, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22418193

RESUMEN

Topologies of two, three and four time-delay-coupled chaotic semiconductor lasers are experimentally and theoretically found to show new types of synchronization. Generalized zero-lag synchronization is observed for two lasers separated by long distances even when their self-feedback delays are not equal. Generalized sub-lattice synchronization is observed for quadrilateral geometries while the equilateral triangle is zero-lag synchronized. Generalized zero-lag synchronization, without the limitation of precisely matched delays, opens possibilities for advanced multi-user communication protocols.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 2): 066204, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22304175

RESUMEN

A chaotic network of size N with delayed interactions which resembles a pseudoinverse associative memory neural network is investigated. For a load α = P/N < 1, where P stands for the number of stored patterns, the chaotic network functions as an associative memory of 2P attractors with macroscopic basin of attractions which decrease with α. At finite α, a chaotic spin-glass phase exists, where the number of distinct chaotic attractors scales exponentially with N. Each attractor is characterized by a coexistence of chaotic behavior and freezing of each one of the N chaotic units or freezing with respect to the P patterns. Results are supported by large scale simulations of networks composed of Bernoulli map units and Mackey-Glass time delay differential equations.

3.
Phys Rev Lett ; 104(11): 114102, 2010 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-20366480

RESUMEN

Zero-lag synchronization (ZLS) between chaotic units, which do not have self-feedback or a relay unit connecting them, is experimentally demonstrated for two mutually coupled chaotic semiconductor lasers. The mechanism is based on two mutual coupling delay times with certain allowed integer ratios, whereas for a single mutual delay time ZLS cannot be achieved. This mechanism is also found numerically for mutually coupled chaotic maps where its stability is analyzed using the Schur-Cohn theorem for the roots of polynomials. The symmetry of the polynomials allows only specific integer ratios for ZLS. In addition, we present a general argument for ZLS when several mutual coupling delay times are present.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(5 Pt 2): 056207, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19518536

RESUMEN

A network of chaotic units is investigated where the units are coupled by signals with a transmission delay. Any arbitrary finite network is considered where the chaotic trajectories of the uncoupled units are a solution of the dynamic equations of the network. It is shown that chaotic trajectories cannot be synchronized if the transmission delay is larger than the time scales of the individual units. For several models the master stability function is calculated which determines the maximal delay time for which synchronization is possible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...