Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 36(11): 1609-1617, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37885146

RESUMEN

Divergence of sexual signals between populations can lead to speciation, yet opportunities to study the immediate aftermath of novel signal evolution are rare. The recent emergence and spread of a new mating song, purring, in Hawaiian populations of the Pacific field cricket (Teleogryllus oceanicus) allows us to investigate population divergence soon after the origin of a new signal. Male crickets produce songs with specialized wing structures to attract mates from afar (calling) and entice them to mate when found (courtship). However, in Hawaii, these songs also attract an eavesdropping parasitoid fly (Ormia ochracea) that kills singing males. The novel purring song, produced with heavily modified wing morphology, attracts female crickets but not the parasitoid fly, acting as a solution to this conflict between natural and sexual selection. We've recently observed increasing numbers of purring males across Hawaii. In this integrative field study, we investigated the distribution of purring and the proportion of purring males relative to other morphs in six populations on four islands and compared a suite of phenotypic traits (wing morphology, calling song and courtship song) that make up this novel signal across populations of purring males. We show that purring is found in varying proportions across five, and is locally dominant in four, Hawaiian populations. We also show that calling songs, courtship songs and wing morphology of purring males differ geographically. Our findings demonstrate the rapid pace of evolution in island populations and provide insights into the emergence and divergence of new sexual signals over time.


Asunto(s)
Gryllidae , Animales , Masculino , Femenino , Gryllidae/genética , Conducta Sexual Animal , Evolución Biológica , Vocalización Animal , Hawaii
2.
Evol Lett ; 6(6): 474-489, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36579170

RESUMEN

How novel phenotypes evolve is challenging to imagine because traits are often underlain by numerous integrated phenotypic components, and changes to any one form can disrupt the function of the entire module. Yet novel phenotypes do emerge, and research on adaptive phenotypic evolution suggests that complex traits can diverge while either maintaining existing form-function relationships or through innovations that alter form-function relationships. How these alternate routes contribute to sexual signal evolution is poorly understood, despite the role of sexual signals in generating biodiversity. In Hawaiian populations of the Pacific field cricket, male song attracts both female crickets and a deadly acoustically orienting parasitoid fly. In response to this conflict between natural and sexual selection, male crickets have evolved altered wing morphologies multiple times, resulting in loss and dramatic alteration of sexual signals. More recently, we and others have observed a radical increase in sexual signal variation and the underlying morphological structures that produce song. We conducted the first combined analysis of form (wing morphology), function (emergent signal), and receiver responses to characterize novel variation, test alternative hypotheses about form-function relationships (Form-Function Continuity vs. Form-Function Decoupling), and investigate underlying mechanistic changes and fitness consequences of novel signals. We identified three sound-producing male morphs (one previously undescribed, named "rattling") and found that relationships between morphology and signals have been rewired (Form-Function Decoupling), rapidly and repeatedly, through the gain, loss, and alteration of morphological structures, facilitating the production of signals that exist in novel phenotypic space. By integrating across a hierarchy of phenotypes, we uncovered divergent morphs with unique solutions to the challenge of attracting mates while evading fatal parasitism.

3.
Ecol Evol ; 12(8): e9193, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35979522

RESUMEN

Animals eavesdrop on signals and cues generated by prey, predators, hosts, parasites, competing species, and conspecifics, and the conspicuousness of sexual signals makes them particularly susceptible. Yet, when sexual signals evolve, most attention is paid to impacts on intended receivers (potential mates) rather than fitness consequences for eavesdroppers. Using the rapidly evolving interaction between the Pacific field cricket, Teleogryllus oceanicus, and the parasitoid fly, Ormia ochracea, we asked how parasitoids initially respond to novel changes in host signals. We recently discovered a novel sexual signal, purring song, in Hawaiian populations of T. oceanicus that appears to have evolved because it protects the cricket from the parasitoid while still allowing males to attract female crickets for mating. In Hawaii, there are no known alternative hosts for the parasitoid, so we would expect flies to be under selection to detect and attend to the new purring song. We used complementary field and laboratory phonotaxis experiments to test fly responses to purring songs that varied in many dimensions, as well as to ancestral song. We found that flies strongly prefer ancestral song over purring songs in both the field and the lab, but we caught more flies to purring songs in the field than reported in previous work, indicating that flies may be exerting some selective pressure on the novel song. When played at realistic amplitudes, we found no preferences-flies responded equally to all purrs that varied in frequency, broadbandedness, and temporal measures. However, our lab experiment did reveal the first evidence of preference for purring song amplitude, as flies were more attracted to purrs played at amplitudes greater than naturally occurring purring songs. As purring becomes more common throughout Hawaii, flies that can use purring song to locate hosts should be favored by selection and increase in frequency.

4.
Evolution ; 76(4): 722-736, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166383

RESUMEN

Migratory divides are contact zones between breeding populations with divergent migratory strategies during the nonbreeding season. These locations provide an opportunity to evaluate the role of seasonal migration in the maintenance of reproductive isolation, particularly the relationship between population structure and features associated with distinct migratory strategies. We combine light-level geolocators, genomic sequencing, and stable isotopes to investigate the timing of migration and migratory routes of individuals breeding on either side of a migratory divide coinciding with genomic differentiation across a hybrid zone between barn swallow (Hirundo rustica) subspecies in China. Individuals west of the hybrid zone, with H. r. rustica ancestry, had comparatively enriched stable-carbon and hydrogen isotope values and overwintered in eastern Africa, whereas birds east of the hybrid zone, with H. r. gutturalis ancestry, had depleted isotope values and migrated to southern India. The two subspecies took divergent migratory routes around the high-altitude Karakoram Range and arrived on the breeding grounds over 3 weeks apart. These results indicate that assortative mating by timing of arrival and/or selection against hybrids with intermediate migratory traits may maintain reproductive isolation between the subspecies, and that inhospitable geographic features may have contributed to the diversification of Asian avifauna by influencing migratory patterns.


Asunto(s)
Migración Animal , Golondrinas , Animales , Genómica , Humanos , Fenotipo , Aislamiento Reproductivo , Estaciones del Año
5.
Nat Commun ; 12(1): 797, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542210

RESUMEN

Inadvertent cues can be refined into signals through coevolution between signalers and receivers, yet the earliest steps in this process remain elusive. In Hawaiian populations of the Pacific field cricket, a new morph producing a novel and incredibly variable song (purring) has spread across islands. Here we characterize the current sexual and natural selection landscape acting on the novel signal by (1) determining fitness advantages of purring through attraction to mates and protection from a prominent deadly natural enemy, and (2) testing alternative hypotheses about the strength and form of selection acting on the novel signal. In field studies, female crickets respond positively to purrs, but eavesdropping parasitoid flies do not, suggesting purring may allow private communication among crickets. Contrary to the sensory bias and preference for novelty hypotheses, preference functions (selective pressure) are nearly flat, driven by extreme inter-individual variation in function shape. Our study offers a rare empirical test of the roles of natural and sexual selection in the earliest stages of signal evolution.


Asunto(s)
Gryllidae/fisiología , Preferencia en el Apareamiento Animal/fisiología , Selección Genética/fisiología , Vocalización Animal/fisiología , Animales , Dípteros/fisiología , Femenino , Aptitud Genética , Gryllidae/parasitología , Hawaii , Masculino , Alas de Animales/fisiología
6.
J Anim Ecol ; 90(1): 197-211, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32772372

RESUMEN

Mating behaviour and the timing of reproduction can inhibit genetic exchange between closely related species; however, these reproductive barriers are challenging to measure within natural populations. Social network analysis provides promising tools for studying the social context of hybridization, and the exchange of genetic variation, more generally. We test how social networks within a hybrid population of California Callipepla californica and Gambel's quail Callipepla gambelii change over discrete periods of a breeding season. We assess patterns of phenotypic and genotypic assortment, and ask whether altered associations between individuals (association rewiring), or changes to the composition of the population (individual turnover) drive network dynamics. We use genetic data to test whether social associations and relatedness between individuals correlate with patterns of parentage within the hybrid population. To achieve these aims, we combine RFID association data, phenotypic data and genomic measures with social network analyses. We adopt methods from the ecological network literature to quantify shifts in network structure and to partition changes into those due to individual turnover and association rewiring. We integrate genomic data into networks as node-level attributes (ancestry) and edges (relatedness, parentage) to test links between social and parentage networks. We show that rewiring of associations between individuals that persist across network periods, rather than individual turnover, drives the majority of the changes in network structure throughout the breeding season, and that the traits involved in phenotypic/genotypic assortment were highly dynamic over time. Social networks were randomly assorted based on genetic ancestry, suggesting weak behavioural reproductive isolation within this hybrid population. Finally, we show that the strength of associations within the social network, but not levels of genetic relatedness, predicts patterns of parentage. Social networks play an important role in population processes such as the transmission of disease and information, yet there has been less focus on how networks influence the exchange of genetic variation. By integrating analyses of social structure, phenotypic assortment and reproductive outcomes within a hybrid zone, we demonstrate the utility of social networks for analysing links between social context and gene flow within wild populations.


Asunto(s)
Flujo Génico , Hibridación Genética , Animales , Genotipo , Fenotipo , Red Social
7.
Am Nat ; 193(6): 852-865, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31094596

RESUMEN

Behavior can strongly influence rates and patterns of hybridization between animal populations and species. Yet few studies have examined reproductive behaviors in natural hybrid zones within the fine-scale social context in which they naturally occur. We use radio-frequency identification tags with social network analyses to test whether phenotypic similarity in plumage and mass correlate with social behavior throughout a breeding season in a California and Gambel's quail hybrid zone. We use a novel approach to partition phenotypic variation in a way that does not confound differences between sexes and species, and we illustrate the complex ways that phenotype and behavior structure the social environment, mating opportunities, and male-male associations. Associations within the admixed population were random with respect to species-specific plumage but showed strong patterns of assortment based on sexually dimorphic plumage, monomorphic plumage, and mass. Weak behavioral reproductive isolation in this admixed population may be the result of complex patterns of phenotypic assortment based on multiple traits rather than a lack of phenotypic discrimination. More generally, our results support the utility of social network analyses for analyzing behavioral factors affecting genetic exchange between populations and species.


Asunto(s)
Hibridación Genética , Preferencia en el Apareamiento Animal , Codorniz , Animales , Femenino , Masculino , Fenotipo , Red Social
8.
Am Nat ; 191(1): 1-20, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244561

RESUMEN

The large body of theory on speciation with gene flow has brought to light fundamental differences in the effects of two types of mating rules on speciation: preference/trait rules, in which divergence in both (female) preferences and (male) mating traits is necessary for assortment, and matching rules, in which individuals mate with like individuals on the basis of the presence of traits or alleles that they have in common. These rules can emerge from a variety of behavioral or other mechanisms in ways that are not always obvious. We discuss the theoretical properties of both types of rules and explain why speciation is generally thought to be more likely under matching rather than preference/trait rules. We furthermore discuss whether specific assortative mating mechanisms fall under a preference/trait or matching rule, present empirical evidence for these mechanisms, and propose empirical tests that could distinguish between them. The synthesis of the theoretical literature on these assortative mating rules with empirical studies of the mechanisms by which they act can provide important insights into the occurrence of speciation with gene flow. Finally, by providing a clear framework we hope to inspire greater alignment in the ways that both theoreticians and empiricists study mating rules and how these rules affect speciation through maintaining or eroding barriers to gene flow among closely related species or populations.


Asunto(s)
Flujo Génico , Especiación Genética , Preferencia en el Apareamiento Animal , Fenotipo , Animales , Evolución Biológica , Modelos Genéticos
9.
Biol Lett ; 12(6)2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27354713

RESUMEN

Theory predicts that social interactions are dynamically linked to phenotype. Yet because social interactions are difficult to quantify, little is known about the precise details on how interactivity is linked to phenotype. Here, we deployed proximity loggers on North American barn swallows (Hirundo rustica erythrogaster) to examine intercorrelations among social interactions, morphology and features of the phenotype that are sensitive to the social context: stress-induced corticosterone (CORT) and gut microbial diversity. We analysed relationships at two spatial scales of interaction: (i) body contact and (ii) social interactions occurring between 0.1 and 5 m. Network analysis revealed that relationships between social interactions, morphology, CORT and gut microbial diversity varied depending on the sexes of the individuals interacting and the spatial scale of interaction proximity. We found evidence that body contact interactions were related to diversity of socially transmitted microbes and that looser social interactions were related to signalling traits and CORT.


Asunto(s)
Microbioma Gastrointestinal , Conducta Social , Golondrinas/microbiología , Golondrinas/fisiología , Animales , Corticosterona/sangre , ADN Bacteriano/análisis , Plumas/anatomía & histología , Plumas/química , Femenino , Masculino , Pigmentación/fisiología , ARN Ribosómico 16S/análisis , Caracteres Sexuales , Estrés Fisiológico , Golondrinas/anatomía & histología
10.
PLoS One ; 10(9): e0137242, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26348329

RESUMEN

Proximity logging is a new tool for understanding social behavior as it allows for accurate quantification of social networks. We report results from field calibration and deployment tests of miniaturized proximity tags (Encounternet), digital transceivers that log encounters between tagged individuals. We examined radio signal behavior in relation to tag attachment (tag, tag on bird, tag on saline-filled balloon) to understand how radio signal strength is affected by the tag mounting technique used for calibration tests. We investigated inter-tag and inter-receiver station variability, and in each calibration test we accounted for the effects of antennae orientation. Additionally, we used data from a live deployment on breeding barn swallows (Hirundo rustica erythrogaster) to analyze the quality of the logs, including reciprocal agreement in dyadic logs. We evaluated the impact (in terms of mass changes) of tag attachment on the birds. We were able to statistically distinguish between RSSI values associated with different close-proximity (<5 m) tag-tag distances regardless of antennae orientation. Inter-tag variability was low, but we did find significant inter-receiver station variability. Reciprocal agreement of dyadic logs was high and social networks were constructed from proximity tag logs based on two different RSSI thresholds. There was no evidence of significant mass loss in the time birds were wearing tags. We conclude that proximity loggers are accurate and effective for quantifying social behavior. However, because RSSI and distance cannot be perfectly resolved, data from proximity loggers are most appropriate for comparing networks based on specific RSSI thresholds. The Encounternet system is flexible and customizable, and tags are now light enough for use on small animals (<50 g).


Asunto(s)
Conducta Social , Golondrinas/fisiología , Vocalización Animal/fisiología , Animales
11.
Physiol Plant ; 147(4): 502-13, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22905764

RESUMEN

Infection by eastern dwarf mistletoe (Arceuthobium pusillum) modifies needle and branch morphology and hastens white spruce (Picea glauca) mortality. We examined potential causal mechanisms and assessed the impacts of infection-induced alterations to host development and performance across scales ranging from needle hormone contents to bole expansion. Needles on infected branches (IBs) possessed higher total cytokinin (CK) and lower abscisic acid contents than needles on uninfected branches (UBs). IBs exhibited greater xylem growth than same-aged UBs, which is consistent with the promotive effect of CKs on vascular differentiation and organ sink strength. Elevated CK content may also explain the dense secondary and tertiary branching observed at the site of infection, i.e. the formation of 'witches' brooms' with significantly lower light capture efficiencies. Observed hormone perturbations were consistent with higher rates of transpiration, lower water use efficiencies (WUEs) and more negative needle carbon isotope ratios observed for IBs. Observed reductions in needle size allowed IBs to compensate for reduced hydraulic conductivity. Severe infections resulted in dramatically decreased diameter growth of the bole. It seems likely that the modifications to host hormone contents by eastern dwarf mistletoe infection led white spruce trees to dedicate a disproportionate fraction of their photoassimilate and other resources to self-shaded branches with low WUE. This would have decreased the potential for fixed carbon accumulation, generating a decline in the whole-tree resource pool. As mistletoe infections grew in size and the number of IBs increased, this burden was manifested as increasingly greater reductions in bole growth.


Asunto(s)
Interacciones Huésped-Parásitos , Picea/crecimiento & desarrollo , Picea/metabolismo , Viscaceae/crecimiento & desarrollo , Ácido Abscísico/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Luz , Maine , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/fisiología , Tallos de la Planta/fisiología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA