Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Mycol ; 62(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38569657

RESUMEN

Fungi are often considered a delicacy and are primarily cultivated and harvested, although numerous species are responsible for intoxication due to toxin content. Foodborne diseases are a significant public health concern, causing approximately 420 000 deaths and 600 million morbidities yearly, of which mushroom poisoning is one of the leading causes. Epidemiological data on non-cultivated mushroom poisoning in individual countries are often unrepresentative, as intoxication rarely requires emergency intervention. On the other hand, the lack of specialist knowledge among medical personnel about the toxicological manifestations of mushroom consumption may result in ineffective therapeutic interventions. This work aims to provide an easy-to-consult and wide-ranging tool useful for better understanding the variability of mushroom intoxications, the associated symptoms, and the main treatments for the most severe cases, given the absence of a complete species mapping tool toxic. Moreover, we establish an effective collection network that describes the incidence of mushroom poisonings by reporting the species and associated toxicological manifestations for each case. In conclusion, we highlight the need to establish appropriate primary prevention interventions, such as training the affected population and increasing consultancy relationships between mycological experts and specialised healthcare personnel.


We propose a review of the literature that describes the main syndromes resulting from the consumption of toxic fungal species, reporting symptoms and clinical manifestations, latency times and, where possible, diagnostic tools for recognising the species involved and interventions to be carried out.


Asunto(s)
Intoxicación por Setas , Humanos , Intoxicación por Setas/prevención & control , Intoxicación por Setas/epidemiología , Agaricales/química
2.
Curr Microbiol ; 80(9): 316, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37558905

RESUMEN

Italy is the leading producer of rice in Europe, but this crop is increasingly threatened by many factors such as pathogens' resistance, pollution and climate change. To date, few works keep in consideration the ecological role that the open irrigation system can play in the dispersion of important opportunistic species, and if it is affected by agricultural management and environmental seasonal changing. This work carried out the mycological characterization of a rice field irrigation system located in Vistarino (Pavia, Lombardy, Italy). Three main sections of an irrigation system (canal, ditch and paddy) were sampled during the summer 2018 (irrigation season of the rice crop). Water samples processing underlined how the irrigation system is rich of fungal diversity (59 species isolated). In order of abundance, the canal samples are characterized by the dominance of Aspergillus, Cladosporium, Fusarium and Trichoderma genera, while the ditch samples by Alternaria, Cladosporium, Fusarium, and Penicillium genera, and the paddy samples by Alternaria, Cladosporium, Fusarium and Trichoderma genera. Results showed that the three environments are mycologically independent of each other: fungi do not exploit the irrigation system for their dispersion in paddy. Probably fungi prefer others dispersion systems such as air dispersion. This means that an open irrigation system is not to be considered as a continue system with free circulation of fungi. Indeed, each sector of the system appears characterized by a typical funga, which undergoes variations during the sampled season due to agricultural management and environmental conditions.


Asunto(s)
Hongos , Oryza , Microbiología del Suelo , Alternaria , Aspergillus , Bioaseguramiento , Hongos/fisiología , Oryza/microbiología
3.
Plants (Basel) ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771637

RESUMEN

The inoculation of plants with plant-growth-promoting microorganisms (PGPM) (i.e., bacterial and fungal strains) is an emerging approach that helps plants cope with abiotic and biotic stresses. However, knowledge regarding their synergic effects on plants growing in metal-rich soils is limited. Consequently, the aim of this study was to investigate the biomass, ecophysiology, and metal accumulation of the facultative Ni-hyperaccumulator Alyssoides utriculata (L.) Medik. inoculated with single or mixed plant-growth-promoting (PGP) bacterial strain Pseudomonas fluorescens Migula 1895 (SERP1) and PGP fungal strain Penicillium ochrochloron Biourge (SERP03 S) on native serpentine soil (n = 20 for each treatment). Photosynthetic efficiency (Fv/Fm) and performance indicators (PI) had the same trends with no significant differences among groups, with Fv/Fms > 1 and PI up to 12. However, the aboveground biomass increased 4-5-fold for single and mixed inoculated plants. The aboveground/belowground dry biomass ratio was higher for plants inoculated with fungi (30), mixed (21), and bacteria (17). The ICP-MS highlighted that single and mixed inocula were able to double the aboveground biomass' P content. Mn metal accumulation significantly increased with both single and mixed PGP inocula, and Zn accumulation increased only with single PGP inocula, whereas Cu accumulation increased twofold only with mixed PGP inocula, but with a low content. Only Ni metal accumulation approached the hyperaccumulation level (Ni > 1000 mg/kg DW) with all treatments. This study demonstrated the ability of selected single and combined PGP strains to significantly increase plant biomass and plant tolerance of metals present in the substrate, resulting in a higher capacity for Ni accumulation in shoots.

4.
Med Leg J ; 90(2): 81-85, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35255742

RESUMEN

The finding of a partially mummified body presenting signs of trauma requires the forensic pathologist to conduct a careful and complex examination; multidisciplinary analysis is often necessary.We report a case where the partially mummified corpse of an elderly man was found in his own home more than seven years after death. Complete post-mortem investigation revealed a cranial fracture and an acute subdural haematoma.An in-depth multidisciplinary analysis provided important information on the modality and cause of death but it was not possible to establish whether the trauma and death resulted from an accidental event or from an assault.


Asunto(s)
Traumatismos Craneocerebrales , Homicidio , Anciano , Autopsia , Patologia Forense , Humanos , Masculino
5.
Microorganisms ; 9(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208305

RESUMEN

Contamination of marine sediments by organic and/or inorganic compounds represents one of the most critical problems in marine environments. This issue affects not only biodiversity but also ecosystems, with negative impacts on sea water quality. The scientific community and the European Commission have recently discussed marine environment and ecosystem protection and restoration by sustainable green technologies among the main objectives of their scientific programmes. One of the primary goals of sustainable restoration and remediation of contaminated marine sediments is research regarding new biotechnologies employable in the decontamination of marine sediments, to consider sediments as a resource in many fields such as industry. In this context, microorganisms-in particular, fungi and bacteria-play a central and crucial role as the best tools of sustainable and green remediation processes. This review, carried out in the framework of the Interreg IT-FR Maritime GEREMIA Project, collects and shows the bioremediation and mycoremediation studies carried out on marine sediments contaminated with ecotoxic metals and organic pollutants. This work evidences the potentialities and limiting factors of these biotechnologies and outlines the possible future scenarios of the bioremediation of marine sediments, and also highlights the opportunities of an integrated approach that involves fungi and bacteria together.

6.
Life (Basel) ; 11(4)2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33806067

RESUMEN

Is it possible to improve the efficiency of bioremediation technologies? The use of mixed cultures of bacteria and fungi inoculated at the rhizosphere level could promote the growth of the associated hyperaccumulating plant species and increase the absorption of metals in polluted soils, broadening new horizons on bioremediation purposes. This work investigates interactions between Ni-tolerant plant growth-promoting bacteria and fungi (BF) isolated from the rhizosphere of a hyperaccumulating plant. The aim is to select microbial consortia with synergistic activity to be used in integrated bioremediation protocols. Pseudomonas fluorescens (Pf), Streptomyces vinaceus (Sv) Penicilliumochrochloron (Po), and Trichoderma harzianum group (Th) were tested in mixes (Po-Sv, Po-Pf, Th-Pf, and Th-Sv). These strains were submitted to tests (agar overlay, agar plug, and distance growth co-growth tests), tailored for this aim, on Czapek yeast agar (CYA) and tryptic soy agar (TSA) media and incubated at 26 ± 1 °C for 10 days. BF growth, shape of colonies, area covered on plate, and inhibition capacity were evaluated. Most BF strains still exhibit their typical characters and the colonies separately persisted without inhibition (as Po-Sv) or with reciprocal confinement (as Th-Sv and Th-Pf). Even if apparently inhibited, the Po-Pf mix really merged, thus obtaining morphological traits representing a synergic co-growth, where both strains reached together the maturation phase and developed a sort of mixed biofilm. Indeed, bacterial colonies surround the mature fungal structures adhering to them without any growth inhibition. First data from in vivo experimentation with Po and Pf inocula in pot with metalliferous soils and hyperaccumulator plants showed their beneficial effect on plant growth. However, there is a lack of information regarding the effective co-growth between bacteria and fungi. Indeed, several studies, which directly apply the co-inoculum, do not consider suitable microorganisms consortia. Synergic rhizosphere BFs open new scenarios for plant growth promotion and soil bioremediation.

7.
Front Fungal Biol ; 2: 787381, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37744132

RESUMEN

The co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere. These microorganism consortia can both mitigate the soil conditions promoting plant colonization and increase the performance of hyperaccumulator plants. Indeed, microfungi and bacteria from metalliferous soils or contaminated matrices are commonly metal-tolerant and can play a key role for plants in the phytoextraction or phytostabilization of metals. However, few works deepen the effects of the inoculation of microfungal and bacterial consortia in the rhizosphere of metallophytes and their synergistic activity. This mini-review aimed to collect and report the data regarding the role of microbial consortia and their potentialities known to date. Moreover, our new data had shown an active fungal-bacteria consortium in the rhizosphere of the hyperaccumulator plant Alyssoides utriculata.

8.
Microorganisms ; 8(6)2020 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-32545162

RESUMEN

Composting is a complex process in which various micro-organisms, mainly fungi and bacteria, are involved. The process depends on a large number of factors (biological, chemical, and physical) among which microbial populations play a fundamental role. The high temperatures that occur during the composting process indicate the presence of thermotolerant and thermophilic micro-organisms that are key for the optimization of the process. However, the same micro-organisms can be harmful (allergenic, pathogenic) for workers that handle large quantities of material in the plant, and for end users, for example, in the indoor environment (e.g., pots in houses and offices). Accurate knowledge of thermotolerant and thermophilic organisms present during the composting stages is required to find key organisms to improve the process and estimate potential health risks. The objective of the present work was to study thermotolerant and thermophilic mycobiota at different time points of compost maturation. Fungi were isolated at four temperatures (25, 37, 45, and 50 °C) from compost samples collected at five different steps during a 21-day compost-maturation period in an active composting plant in Liguria (northwestern Italy). The samples were subsequently plated on three different media. Our results showed a high presence of fungi with an order of magnitude ranging from 1 × 104 to 3 × 105 colony-forming units (CFU) g-1. The isolated strains, identified by means of specific molecular tools (ITS, beta-tubulin, calmodulin, elongation factor 1-alpha, and LSU sequencing), belonged to 45 different species. Several thermophilic species belonging to genera Thermoascus and Thermomyces were detected, which could be key during composting. Moreover, the presence of several potentially harmful fungal species, such as Aspergillus fumigatus, A. terreus, and Scedosporium apiospermum, were found during the whole process, including the final product. Results highlighted the importance of surveying the mycobiota involved in the composting process in order to: (i) find solutions to improve efficiency and (ii) reduce health risks.

9.
Photodiagnosis Photodyn Ther ; 29: 101575, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31614222

RESUMEN

BACKGROUND: A large number of systemic diseases can be linked to oral candida pathogenicity. The global trend of invasive candidiasis has increased progressively and is often accentuated by increasing Candida albicans resistance to the most common antifungal medications. Photodynamic therapy (PDT) is a promising therapeutic approach for oral microbial infections. A new formulation of 5-aminolevulinic acid (5%ALA) in a thermosetting gel (t) (5%ALA-PTt) was patented and recently has become available on the market. However, its antimicrobial properties, whether mediated or not by PDT, are not yet known. In this work we characterised them. METHODS: We isolated a strain of C. albicans from plaques on the oral mucus membrane of an infected patient. Colonies of this strain were exposed for 1 24 h, to 5%ALA-PTt, 5%ALA-PTt buffered to pH 6.5 (the pH of the oral mucosa) (5%ALA-PTtb) or not exposed (control). The 1 h-exposed samples were also irradiated at a wavelength of 630 nm with 0.14 watts (W) and 0.37 W/cm2 for 7 min at a distance of <1 mm. RESULTS AND CONCLUSION: The 5% ALA-PTt preparation was shown to be effective in reducing the growth of biofilm and inoculum of C. albicans. This effect seems to be linked to the intrinsic characteristics of 5%ALA-TPt, such acidic pH and the induction of free radical production. This outcome was significantly enhanced by the effect of PDT at relatively short incubation and irradiation times, which resulted in growth inhibition of both treated biofilm and inoculum by ∼80% and ∼95%, respectively.


Asunto(s)
Candida albicans/efectos de los fármacos , Ácidos Levulínicos/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Candidiasis/tratamiento farmacológico , Química Farmacéutica , Geles , Humanos , Ácidos Levulínicos/administración & dosificación , Enfermedades de la Boca/tratamiento farmacológico , Fármacos Fotosensibilizantes/administración & dosificación , Ácido Aminolevulínico
10.
Dis Aquat Organ ; 135(3): 227-239, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31535618

RESUMEN

Sponges are considered promising sources of biomolecules for both pharmaceutical and cosmetic interests as well as for the production of biomaterials suitable for tissue engineering and regenerative medicine. Accordingly, the ability to grow sponges in captivity and in healthy conditions to increase their biomass is a required goal for the development of sponge aquaculture systems. To date, little information is available about the pathogenicity of fungi associated with sponges. In our study, we identified an infection in freshly collected specimens of Chondrosia reniformis (Porifera, Demospongiae) and determined that the fungus Aspergillus tubingensis was the pathogen responsible. This is the first description of a natural infection of C. reniformis by A. tubingensis. Despite raising an inflammatory response by means of an increase in tumour necrosis factor (TNF) mRNA, the infected C. reniformis specimens were not able to control the fungal infection, leading to rotting in 15 d. Characterization of this infection shows that a widely distributed fungus can represent a potential hazard to sponge aquaculture industries and how, especially in stressed or compromised marine environments, this fungus could represent a fatal opportunistic pathogen.


Asunto(s)
Poríferos , Animales , Acuicultura , Aspergillus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA