Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Pathol Inform ; 13: 100116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268099

RESUMEN

Background: Identification of HER2 protein overexpression and/or amplification of the HER2 gene are required to qualify breast cancer patients for HER2 targeted therapies. In situ hybridization (ISH) assays that identify HER2 gene amplification function as a stand-alone test for determination of HER2 status and rely on the manual quantification of the number of HER2 genes and copies of chromosome 17 to determine HER2 amplification. Methods: To assist pathologists, we have developed the uPath HER2 Dual ISH Image Analysis for Breast (uPath HER2 DISH IA) algorithm, as an adjunctive aid in the determination of HER2 gene status in breast cancer specimens. The objective of this study was to compare uPath HER2 DISH image analysis vs manual read scoring of VENTANA HER2 DISH-stained breast carcinoma specimens with ground truth (GT) gene status as the reference. Three reader pathologists reviewed 220, formalin-fixed, paraffin-embedded (FFPE) breast cancer cases by both manual and uPath HER2 DISH IA methods. Scoring results from manual read (MR) and computer-assisted scores (image analysis, IA) were compared against the GT gene status generated by consensus of a panel of pathologists. The differences in agreement rates of HER2 gene status between manual, computer-assisted, and GT gene status were determined. Results: The positive percent agreement (PPA) and negative percent agreement (NPA) rates for image analysis (IA) vs GT were 97.2% (95% confidence interval [CI]: 95.0, 99.3) and 94.3% (95% CI: 90.8, 97.3) respectively. Comparison of agreement rates showed that the lower bounds of the 95% CIs for the difference of PPA and NPA for IA vs MR were -0.9% and -6.2%, respectively. Further, inter- and intra-reader agreement rates in the IA method were observed with point estimates of at least 96.7%. Conclusions: Overall, our data show that the uPath HER2 DISH IA is non-inferior to manual scoring and supports its use as an aid for pathologists in routine diagnosis of breast cancer.

2.
IEEE Trans Med Imaging ; 27(8): 1120-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18672429

RESUMEN

Computed tomography (CT) has a trend towards higher resolution and higher noise. This development has increased the interest in anisotropic smoothing techniques for CT, which aim to reduce noise while preserving structures of interest. However, existing smoothing techniques are slow, which makes clinical application difficult. Furthermore, the published methods have limitations with respect to preserving small details in CT data. This paper presents a widely applicable speed optimized framework for anisotropic smoothing techniques. A second contribution of this paper is an extension to an existing smoothing technique aimed at better preserving small structures of interest in CT data. Based on second-order image structure, the method first determines an importance map, which indicates potentially relevant structures that should be preserved. Subsequently an anisotropic diffusion process is started. The diffused data is used in most parts of the images, while structures with significant second-order information are preserved. The method is qualitatively evaluated against an anisotropic diffusion method without structure preservation in an observer study to assess the improvement of 3-D visualizations of CT series and quantitatively by determining the reduction of the difference between low and high dose CT scans of in vitro carotid plaques.


Asunto(s)
Algoritmos , Artefactos , Imagenología Tridimensional/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA