Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cardiovasc Med ; 9: 823549, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463762

RESUMEN

In addition to their essential role in hemostasis and thrombosis, platelets also modulate inflammatory reactions and immune responses. This is achieved by specialized surface receptors as well as secretory products including inflammatory mediators and cytokines. Platelets can support and facilitate the recruitment of leukocytes into inflamed tissue. The various properties of platelet function make it less surprising that circulating platelets are different within one individual. Platelets have different physical properties leading to distinct subtypes of platelets based either on their function (procoagulant, aggregatory, secretory) or their age (reticulated/immature, non-reticulated/mature). To understand the significance of platelet phenotypic variation, qualitatively distinguishable platelet phenotypes should be studied in a variety of physiological and pathological circumstances. The advancement in proteomics instrumentation and tools (such as mass spectrometry-driven approaches) improved the ability to perform studies beyond that of foundational work. Despite the wealth of knowledge around molecular processes in platelets, knowledge gaps in understanding platelet phenotypes in health and disease exist. In this review, we report an overview of the role of platelet subpopulations in inflammation and a selection of tools for investigating the role of platelet subpopulations in inflammation.

2.
PLoS One ; 17(1): e0260222, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085240

RESUMEN

BACKGROUND: Sepsis is associated with high platelet turnover and elevated levels of immature platelets. Changes in the platelet transcriptome and the specific impact of immature platelets on the platelet transcriptome remain unclear. Thus, this study sought to address whether and how elevated levels of immature platelets affect the platelet transcriptome in patients with sepsis. METHODS: Blood samples were obtained from patients with sepsis requiring vasopressor therapy (n = 8) and from a control group of patients with stable coronary artery disease and otherwise similar demographic characteristics (n = 8). Immature platelet fraction (IPF) was determined on a Sysmex XE 2100 analyser and platelet function was tested by impedance aggregometry. RNA from leukocyte-depleted platelets was used for transcriptome analysis by Next Generation Sequencing integrating the use of unique molecular identifiers. RESULTS: IPF (median [interquartile range]) was significantly elevated in sepsis patients (6.4 [5.3-8.7] % vs. 3.6 [2.6-4.6] %, p = 0.005). Platelet function testing revealed no differences in adenosine diphosphate- or thrombin receptor activating peptide-induced platelet aggregation between control and sepsis patients. Putative circular RNA transcripts were decreased in platelets from septic patients. Leukocyte contamination defined by CD45 abundance levels in RNA-sequencing was absent in both groups. Principal component analysis of transcripts showed only partial overlap of clustering with IPF levels. RNA sequencing showed up-regulation of 524 and down-regulation of 118 genes in platelets from sepsis patients compared to controls. Upregulated genes were mostly related to catabolic processes and protein translation. Comparison to published platelet transcriptomes showed a large overlap of changes observed in sepsis and COVID-19 but not with reticulated platelets from healthy donors. CONCLUSIONS: Patients with sepsis appear to have a less degraded platelet transcriptome as indicated by increased levels of immature platelets and decreased levels of putative circular RNA transcripts. The present data suggests that increased protein translation is a characteristic mechanism of systemic inflammation.


Asunto(s)
Plaquetas/metabolismo , Sepsis/genética , Transcriptoma/genética , Anciano , Secuencia de Bases/genética , Plaquetas/patología , Fraccionamiento Celular/métodos , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Humanos , Masculino , Activación Plaquetaria/genética , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Recuento de Plaquetas , Pruebas de Función Plaquetaria , ARN Circular/análisis , ARN Circular/genética , Sepsis/sangre , Análisis de Secuencia de ARN/métodos
3.
Circulation ; 144(23): 1876-1890, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34672678

RESUMEN

BACKGROUND: The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT), has protective functions in the cardiovascular system. TERT is not only present in the nucleus but also in mitochondria. However, it is unclear whether nuclear or mitochondrial TERT is responsible for the observed protection, and the appropriate tools are missing to dissect this. METHODS: We generated new mouse models containing TERT exclusively in the mitochondria (mitoTERT mice) or the nucleus (nucTERT mice) to finally distinguish between the functions of nuclear and mitochondrial TERT. Outcome after ischemia/reperfusion, mitochondrial respiration in the heart, and cellular functions of cardiomyocytes, fibroblasts, and endothelial cells, as well, were determined. RESULTS: All mice were phenotypically normal. Although respiration was reduced in cardiac mitochondria from TERT-deficient and nucTERT mice, it was increased in mitoTERT animals. The latter also had smaller infarcts than wild-type mice, whereas nucTERT animals had larger infarcts. The decrease in ejection fraction after 1, 2, and 4 weeks of reperfusion was attenuated in mitoTERT mice. Scar size was also reduced and vascularization increased. Mitochondrial TERT protected a cardiomyocyte cell line from apoptosis. Myofibroblast differentiation, which depends on complex I activity, was abrogated in TERT-deficient and nucTERT cardiac fibroblasts and completely restored in mitoTERT cells. In endothelial cells, mitochondrial TERT enhanced migratory capacity and activation of endothelial nitric oxide synthase. Mechanistically, mitochondrial TERT improved the ratio between complex I matrix arm and membrane subunits, explaining the enhanced complex I activity. In human right atrial appendages, TERT was localized in mitochondria and there increased by remote ischemic preconditioning. The telomerase activator TA-65 evoked a similar effect in endothelial cells, thereby increasing their migratory capacity, and enhanced myofibroblast differentiation. CONCLUSIONS: Mitochondrial, but not nuclear TERT, is critical for mitochondrial respiration and during ischemia/reperfusion injury. Mitochondrial TERT improves complex I subunit composition. TERT is present in human heart mitochondria, and remote ischemic preconditioning increases its level in those organelles. TA-65 has comparable effects ex vivo and improves the migratory capacity of endothelial cells and myofibroblast differentiation. We conclude that mitochondrial TERT is responsible for cardioprotection, and its increase could serve as a therapeutic strategy.


Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Mitocondrias Cardíacas/enzimología , Proteínas Mitocondriales/metabolismo , Daño por Reperfusión Miocárdica/enzimología , Telomerasa/metabolismo , Animales , Complejo I de Transporte de Electrón/genética , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Mitocondrias Cardíacas/genética , Proteínas Mitocondriales/genética , Daño por Reperfusión Miocárdica/genética , Telomerasa/genética
4.
PLoS Biol ; 16(6): e2004408, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29927970

RESUMEN

We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.


Asunto(s)
Cafeína/farmacología , Cardiotónicos/farmacología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Mitocondrias/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/fisiología , Adenosina Trifosfato/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Línea Celular , Movimiento Celular/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Células Endoteliales/fisiología , Células HEK293 , Humanos , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/citología , Transporte de Proteínas/fisiología
5.
Pharmacology ; 101(1-2): 72-75, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29131082

RESUMEN

BACKGROUND: Aspirin plays a crucial role in the prevention of cardiovascular diseases. We previously described that aspirin has effects beyond inhibition of platelet aggregation, as it inhibited thrombin-mediated release of sphingosine-1-phosphate (S1P) from human platelets. S1P is a bioactive lipid with important functions on inflammation and apoptosis. In endothelial cells (EC), S1P is a key regulator of cell migration. In this study, we aimed to analyze the effects of aspirin on platelet-induced EC migration. METHODS: Human umbilical EC migration was measured by Boyden chamber assay. EC migration was induced by platelet supernatants of thrombin receptor-activating peptide-1 (AP1) stimulated platelets. To investigate the S1P receptor subtype that promotes EC migration, specific inhibitors of S1P receptor subtypes were applied. RESULTS: S1P induced EC migration in a concentration-dependent manner. EC migration induced by AP1-stimulated platelet supernatants was reduced by aspirin. S1P1 receptor inhibition almost completely abolished EC migration induced by activated platelets. The inhibition of S1P2 or S1P3 receptor had no effect. CONCLUSION: Aspirin inhibits EC migration induced by activated platelets that is in part due to S1P and mediated by the endothelial S1P1 receptor. The clinical significance of this novel mechanism of aspirin action has to be investigated in future studies.


Asunto(s)
Aspirina/farmacología , Plaquetas/fisiología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Lisofosfolípidos/fisiología , Receptores de Lisoesfingolípidos/fisiología , Esfingosina/análogos & derivados , Anilidas/farmacología , Movimiento Celular , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Organofosfonatos/farmacología , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Esfingosina/fisiología
6.
Genes (Basel) ; 7(6)2016 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-27322328

RESUMEN

Aging is one major risk factor for the incidence of cardiovascular diseases and the development of atherosclerosis. One important enzyme known to be involved in aging processes is Telomerase Reverse Transcriptase (TERT). After the discovery of the enzyme in humans, TERT had initially only been attributed to germ line cells, stem cells and cancer cells. However, over the last few years it has become clear that TERT is also active in cells of the cardiovascular system including cardiac myocytes, endothelial cells, smooth muscle cells and fibroblasts. Interference with the activity of this enzyme greatly contributes to cardiovascular diseases. This review will summarize the findings on the role of TERT in cardiovascular cells. Moreover, recent findings concerning TERT in different mouse models with respect to cardiovascular diseases will be described. Finally, the extranuclear functions of TERT will be covered within this review.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA