Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 165: 103780, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780981

RESUMEN

Cryptococcus gattii is one of the etiological agents of cryptococcosis. To achieve a successful infection, C. gattii cells must overcome the inhospitable host environment and deal with the highly specialized immune system and poor nutrients availability. Inside the host, C. gattii uses a diversified set of tools to maintain homeostasis and establish infection, such as the expression of remarkable and diverse heat shock proteins (Hsps). Grouped by molecular weight, little is known about the Hsp12 subset in pathogenic fungi. In this study, the function of the C. gattii HSP12.1 and HSP12.2 genes was characterized. Both genes were upregulated during murine infection and heat shock. The hsp12.1 Δ null mutant cells were sensitive to plasma membrane and oxidative stressors. Moreover, HSP12 deletion induced C. gattii reactive oxygen species (ROS) accumulation associated with a differential expression pattern of oxidative stress-responsive genes compared to the wild type strain. Apart from these findings, the deletion of the paralog gene HSP12.2 did not lead to any detectable phenotype. Additionally, the double-deletion mutant strain hsp12.1 Δ /hsp12.2 Δ presented a similar phenotype to the single-deletion mutant hsp12.1 Δ, suggesting a minor participation of Hsp12.2 in these processes. Furthermore, HSP12.1 disruption remarkably affected C. gattii virulence and phagocytosis by macrophages in an invertebrate model of infection, demonstrating its importance for C. gattii pathogenicity.


Asunto(s)
Criptococosis , Cryptococcus gattii , Proteínas de Choque Térmico Pequeñas , Animales , Ratones , Criptococosis/microbiología , Cryptococcus gattii/genética , Proteínas de Choque Térmico Pequeñas/metabolismo , Fagocitosis , Virulencia
2.
Arch Virol ; 168(3): 83, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757570

RESUMEN

Here, we report the occurrence and complete genome sequence of a novel victorivirus infecting Metarhizium anisopliae, named "Metarhizium anisopliae victorivirus 1" (MaVV1). The genome is 5353 bp in length and contains two open reading frames (ORFs), encoding a coat protein and an RNA-dependent RNA polymerase (RdRp), that overlap at the octanucleotide sequence AUGAGUAA. These ORFs showed sequence similarity to the corresponding ORFs of Ustilaginoidea virens RNA virus L (68.23%) and Ustilaginoidea virens RNA virus 13 (58.11%), respectively, both of which belong to the family Totiviridae. Phylogenetic analysis based on RdRp sequences revealed that MaVV1 clustered with members of the genus Victorivirus. This is the first genome sequence reported for a virus belonging to the genus Victorivirus infecting the entomopathogenic fungus M. anisopliae.


Asunto(s)
Genoma Viral , Metarhizium , Totiviridae , Genoma Viral/genética , Metarhizium/genética , Metarhizium/virología , Sistemas de Lectura Abierta , Filogenia , ARN Bicatenario , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Totiviridae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA