Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Atmos Chem Phys ; 24(8): 4949-4972, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-38846712

RESUMEN

The design of emission abatement measures to effectively reduce high ground-level ozone (O3) concentrations in urban areas is very complex. In addition to the strongly non-linear chemistry of this secondary pollutant, precursors can be released by a variety of sources in different regions, and locally produced O3 is mixed with that transported from the regional or continental scales. All of these processes depend also on the specific meteorological conditions and topography of the study area. Consequently, high-resolution comprehensive modeling tools are needed to understand the drivers of photochemical pollution and to assess the potential of local strategies to reduce adverse impacts from high tropospheric O3 levels. In this study, we apply the Integrated Source Apportionment Method (ISAM) implemented in the Community Multiscale Air Quality (CMAQ v5.3.2) model to investigate the origin of summertime O3 in the Madrid region (Spain). Consistent with previous studies, our results confirm that O3 levels are dominated by non-local contributions, representing around 70 % of mean values across the region. Nonetheless, precursors emitted by local sources, mainly road traffic, play a more important role during O3 peaks, with contributions as high as 25 ppb. The potential impact of local measures is higher under unfavorable meteorological conditions associated with regional accumulation patterns. These findings suggest that this modeling system may be used in the future to simulate the potential outcomes of specific emission abatement measures to prevent high-O3 episodes in the Madrid metropolitan area.

2.
J Air Waste Manag Assoc ; : 1-11, 2018 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-30325261

RESUMEN

A model was developed to simulate the sewage sludge gasification in an atmospheric fluidised bed gasifier using Aspen Plus. The model here presented was based on the Gibbs free energy minimisation and the restricted equilibrium method was used to calibrate it against previously published experimental data obtained in a lab-scale gasification plant. A sensitivity analysis of the model was carried out by modifying parameters such as the temperature, equivalence ratio (ER) and the steam-to-biomass ratio. The modeled results were in good agreement with the experimental data (especially when air was used as gasifying agent) and reproduced satisfactorily the experimental trends found for the gas composition, the carbon conversion (Xc) and the cold gas efficiency (CGE) under different gasification conditions. Operating at higher temperatures increased the production of H2 and CO, as well as the Xc and the CGE. The increase in ER produced higher Xc, yet the CGE experienced slight changes due to a decrease in the lower heating value of the resulting syngas, as well as the oxidation of combustible gases. The use of air+steam as gasifying agent increased the H2 content of the produced gases but decreased the accuracy of the model.

4.
Sci Total Environ ; 635: 1561-1573, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29605235

RESUMEN

Exceedances of NO2 hourly limit value (200 µg·m-3) imply the need to implement short term action plans to avoid adverse effects on human health in urban areas. The Madrid City Council applied the stage 3 of the NO2 protocol during a high-pollution episode under stable meteorological conditions on December 2016 for the first time. This included road traffic access restrictions to the city centre (50% of conventional private vehicles based on plate numbers). In this contribution we analyse different meteorological and air quality observations, including non-standard parameters (such as number of ultrafine particles and remote sensing techniques MAXDOAS) for a better understanding of the effectivity of short-term emission abatement measures under real conditions and to identify options to improve the NO2 protocol in the future. According to our results, the inversion base height computed from vertical temperature soundings is a meaningful index to anticipate very unfavourable conditions and trigger the actions included in the protocol. The analysis of the concentration levels of the main pollutants from the Madrid air quality monitoring network indicate that only stage 3 of the protocol had a significant effect on NO2 maximum concentrations. The restrictions applied may have prevented NO2 concentrations to further increase in the city centre (up to 15%) although pollution levels in the city outskirts, outside the area directly affected by the traffic restrictions, remained unchanged or may have been slightly increased. Nonetheless, further studies are needed to estimate more precisely the effect of the measures taken and to assess potential trade-offs. Our results suggest that emissions play an important role also under very strong stability conditions although drastic measures are needed to achieve a significant impact. This highlights the importance of an appropriate timing for short-term actions and the need of permanent abatement measures related to air quality plans and policies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Ciudades , Material Particulado/análisis , España , Emisiones de Vehículos/análisis
5.
Sci Total Environ ; 566-567: 416-427, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27232968

RESUMEN

This paper presents the evaluation of emissions from vehicle operations in a domain of 300m×300m covering a complex urban roundabout with high traffic density in Madrid. Micro-level simulation was successfully applied to estimate the emissions on a scale of meters. Two programs were used: i) VISSIM to simulate the traffic on the square and to compute velocity-time profiles; and ii) VERSIT+micro through ENVIVER that uses VISSIM outputs to compute the related emissions at vehicle level. Data collection was achieved by a measurement campaign obtaining empirical data of vehicle flows and traffic intensities. Twelve simulations of different traffic situations (scenarios) were conducted, representing different hours from several days in a week and the corresponding NOX and PM10 emissions were estimated. The results show a general reduction on average speeds for higher intensities due to braking-acceleration patterns that contribute to increase the average emission factor and, therefore, the total emissions in the domain, especially on weekdays. The emissions are clearly related to traffic volume, although maximum emission scenario does not correspond to the highest traffic intensity due to congestion and variations in fleet composition throughout the day. These results evidence the potential that local measures aimed at alleviating congestion may have in urban areas to reduce emissions. In general, scenario-averaged emission factors estimated with the VISSIM-VERSIT+micro modelling system fitted well those from the average-speed model COPERT, used as a preliminary validation of the results. The largest deviations between these two models occur in those scenarios with more congestion. The design and resolution of the microscale modelling system allow to reflect the impact of actual traffic conditions on driving patterns and related emissions, making it useful for the design of mitigation measures for specific traffic hot-spots.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Óxidos de Nitrógeno/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , Modelos Teóricos , España
6.
Sci Total Environ ; 527-528: 351-61, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25965050

RESUMEN

This paper analyses the effects of policy making for air pollution abatement in Spain between 2000 and 2020 under an integrated assessment approach with the AERIS model for number of pollutants (NOx/NO2, PM10/PM2.5, O3, SO2, NH3 and VOC). The analysis of the effects of air pollution focused on different aspects: compliance with the European limit values of Directive 2008/50/EC for NO2 and PM10 for the Spanish air quality management areas; the evaluation of impacts caused by the deposition of atmospheric sulphur and nitrogen on ecosystems; the exceedance of critical levels of NO2 and SO2 in forest areas; the analysis of O3-induced crop damage for grapes, maize, potato, rice, tobacco, tomato, watermelon and wheat; health impacts caused by human exposure to O3 and PM2.5; and costs on society due to crop losses (O3), disability-related absence of work staff and damage to buildings and public property due to soot-related soiling (PM2.5). In general, air quality policy making has delivered improvements in air quality levels throughout Spain and has mitigated the severity of the impacts on ecosystems, health and vegetation in 2020 as target year. The findings of this work constitute an appropriate diagnosis for identifying improvement potentials for further mitigation for policy makers and stakeholders in Spain.


Asunto(s)
Contaminación del Aire/legislación & jurisprudencia , Política Ambiental/legislación & jurisprudencia , Contaminación del Aire/economía , Contaminación del Aire/estadística & datos numéricos , Monitoreo del Ambiente , Política Ambiental/economía , Modelos Teóricos , Formulación de Políticas , Medición de Riesgo , España
7.
J Air Waste Manag Assoc ; 65(4): 384-94, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25947208

RESUMEN

UNLABELLED: Air pollution abatement policies must be based on quantitative information on current and future emissions of pollutants. As emission projections uncertainties are inevitable and traditional statistical treatments of uncertainty are highly time/resources consuming, a simplified methodology for nonstatistical uncertainty estimation based on sensitivity analysis is presented in this work. The methodology was applied to the "with measures" scenario for Spain, concretely over the 12 highest emitting sectors regarding greenhouse gas and air pollutants emissions. Examples of methodology application for two important sectors (power plants, and agriculture and livestock) are shown and explained in depth. Uncertainty bands were obtained up to 2020 by modifying the driving factors of the 12 selected sectors and the methodology was tested against a recomputed emission trend in a low economic-growth perspective and official figures for 2010, showing a very good performance. IMPLICATIONS: A solid understanding and quantification of uncertainties related to atmospheric emission inventories and projections provide useful information for policy negotiations. However, as many of those uncertainties are irreducible, there is an interest on how they could be managed in order to derive robust policy conclusions. Taking this into account, a method developed to use sensitivity analysis as a source of information to derive nonstatistical uncertainty bands for emission projections is presented and applied to Spain. This method simplifies uncertainty assessment and allows other countries to take advantage of their sensitivity analyses.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Incertidumbre , Emisiones de Vehículos , Agricultura , Animales , Predicción/métodos , Ganado , Sensibilidad y Especificidad
8.
Sci Total Environ ; 466-467: 809-19, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23973547

RESUMEN

Modeling is an essential tool for the development of atmospheric emission abatement measures and air quality plans. Most often these plans are related to urban environments with high emission density and population exposure. However, air quality modeling in urban areas is a rather challenging task. As environmental standards become more stringent (e.g. European Directive 2008/50/EC), more reliable and sophisticated modeling tools are needed to simulate measures and plans that may effectively tackle air quality exceedances, common in large urban areas across Europe, particularly for NO2. This also implies that emission inventories must satisfy a number of conditions such as consistency across the spatial scales involved in the analysis, consistency with the emission inventories used for regulatory purposes and versatility to match the requirements of different air quality and emission projection models. This study reports the modeling activities carried out in Madrid (Spain) highlighting the atmospheric emission inventory development and preparation as an illustrative example of the combination of models and data needed to develop a consistent air quality plan at urban level. These included a series of source apportionment studies to define contributions from the international, national, regional and local sources in order to understand to what extent local authorities can enforce meaningful abatement measures. Moreover, source apportionment studies were conducted in order to define contributions from different sectors and to understand the maximum feasible air quality improvement that can be achieved by reducing emissions from those sectors, thus targeting emission reduction policies to the most relevant activities. Finally, an emission scenario reflecting the effect of such policies was developed and the associated air quality was modeled.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , Contaminación del Aire/prevención & control , Ciudades , Modelos Teóricos , España
9.
J Air Waste Manag Assoc ; 63(5): 557-64, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23786147

RESUMEN

UNLABELLED: In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. IMPLICATIONS: Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.


Asunto(s)
Dióxido de Carbono/química , Carbón Orgánico/química , Hidróxidos/química , Compuestos de Potasio/química , Eliminación de Residuos/métodos , Aguas del Alcantarillado/química , Hidróxido de Sodio/química , Adsorción , Carbono/química , Dióxido de Carbono/análisis , Calor , España
10.
J Hazard Mater ; 243: 292-301, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23142056

RESUMEN

This study assessed the applicability of a ferrous oxalate mediated photo-Fenton pretreatment for indigo-dyed wastewaters as to produce a biodegradable enough effluent, likely of being derived to conventional biological processes. The photochemical treatment was performed with ferrous oxalate and hydrogen peroxide in a Compound Parabolic Concentrator (CPC) under batch operation conditions. The reaction was studied at natural pH conditions (5-6) with indigo concentrations in the range of 6.67-33.33 mg L(-1), using a fixed oxalate-to-iron mass ratio (C(2)O(4)(2-)/Fe(2+)=35) and assessing the system's biodegradability at low (257 mg L(-1)) and high (1280 mg L(-1)) H(2)O(2) concentrations. In order to seek the optimal conditions for the treatment of indigo dyed wastewaters, an experimental design consisting in a statistical surface response approach was carried out. This analysis revealed that the best removal efficiencies for Total Organic Carbon (TOC) were obtained for low peroxide doses. In general it was observed that after 20 kJ L(-1), almost every treated effluent increased its biodegradability from a BOD(5)/COD value of 0.4. This increase in the biodegradability was confirmed by the presence of short chain carboxylic acids as intermediate products and by the mineralization of organic nitrogen into nitrate. Finally, an overall decrease in the LC(50) for Artemia salina indicated a successful detoxification of the effluent.


Asunto(s)
Biodegradación Ambiental , Colorantes/química , Peróxido de Hidrógeno/química , Hierro/química , Ácido Oxálico/química , Aguas Residuales/análisis , Contaminantes Químicos del Agua/química , Animales , Artemia , Análisis de la Demanda Biológica de Oxígeno , Carbono/análisis , Cromatografía Líquida de Alta Presión , Concentración de Iones de Hidrógeno , Cinética , Dosificación Letal Mediana , México , Nitratos/química , Espectrofotometría Ultravioleta , Industria Textil , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/toxicidad
11.
Environ Pollut ; 165: 25-37, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22398018

RESUMEN

A module to estimate risks of ozone damage to vegetation has been implemented in the Integrated Assessment Modelling system for the Iberian Peninsula. It was applied to compute three different indexes for wheat and Holm oak; daylight AOT40 (cumulative ozone concentration over 40 ppb), cumulative ozone exposure index according to the Directive 2008/50/EC (AOT40-D) and POD(Y) (Phytotoxic Ozone Dose over a given threshold of Y nmol m(-2) s(-1)). The use of these indexes led to remarkable differences in spatial patterns of relative ozone risks on vegetation. Ozone critical levels were exceeded in most of the modelling domain and soil moisture content was found to have a significant impact on the results. According to the outputs of the model, daylight AOT40 constitutes a more conservative index than the AOT40-D. Additionally, flux-based estimations indicate high risk areas in Portugal for both wheat and Holm oak that are not identified by AOT-based methods.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Modelos Químicos , Ozono/análisis , Contaminantes Atmosféricos/toxicidad , Ozono/toxicidad , Portugal , Quercus/efectos de los fármacos , Quercus/crecimiento & desarrollo , Medición de Riesgo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...