Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 204: 108145, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37907041

RESUMEN

We recently demonstrated that, under elevated [CO2] (eCa), coffee (Coffea arabica L.) plants grown at high light (HL), but not at low light (LL), display higher stomatal conductance (gs) than at ambient [CO2] (aCa). We then hypothesized that the enhanced gs at eCa/HL, if sustained at the long-term, would lead to adjustments in hydraulic architecture. To test this hypothesis, potted plants of coffee were grown in open-top chambers for 12 months under HL or LL (ca. 9 or 1 mol photons m-2 day-1, respectively); these light treatments were combined with two [CO2] levels (ca. 437 or 705 µmol mol-1, respectively). Under eCa/HL, increased gs was closely accompanied by increases in branch and leaf hydraulic conductances, suggesting a coordinated response between liquid- and vapor-phase water flows throughout the plant. Still under HL, eCa also resulted in increased Huber value (sapwood area-to-total leaf area), sapwood area-to-stem diameter, and root mass-to-total leaf area, thus further improving the water supply to the leaves. Our results demonstrate that Ca is a central player in coffee physiology increasing carbon gain through a close association between stomatal function and an improved hydraulic architecture under HL conditions.


Asunto(s)
Coffea , Estomas de Plantas , Estomas de Plantas/fisiología , Fotosíntesis/fisiología , Dióxido de Carbono , Café , Coffea/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
2.
Plant Mol Biol ; 112(4-5): 213-223, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37351824

RESUMEN

Anthocyanins are a family of water-soluble vacuolar pigments present in almost all flowering plants. The chemistry, biosynthesis and functions of these flavonoids have been intensively studied, in part due to their benefit for human health. Given that they are efficient antioxidants, intense research has been devoted to studying their possible roles against damage caused by reactive oxygen species (ROS). However, the redox homeostasis established between antioxidants and ROS is important for plant growth and development. On the one hand, high levels of ROS can damage DNA, proteins, and lipids, on the other, they are also required for cell signaling, plant development and stress responses. Thus, a balance is needed in which antioxidants can remove excessive ROS, while not precluding ROS from triggering important cellular signaling cascades. In this article, we discuss how anthocyanins and ROS interact and how a deeper understanding of the balance between them could help improve plant productivity, nutritional value, and resistance to stress, while simultaneously maintaining proper cellular function and plant growth.


Asunto(s)
Antocianinas , Antioxidantes , Humanos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/metabolismo , Antocianinas/metabolismo , Oxidación-Reducción , Desarrollo de la Planta , Estrés Oxidativo
3.
Plants (Basel) ; 12(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37050105

RESUMEN

Coffee (Coffea arabica L.) plants have been assorted as highly suitable to growth at elevated [CO2] (eCa), although such suitability is hypothesized to decrease under severe shade. We herein examined how the combination of eCa and contrasting irradiance affects growth and photosynthetic performance. Coffee plants were grown in open-top chambers under relatively high light (HL) or low light (LL) (9 or 1 mol photons m-2 day-1, respectively), and aCa or eCa (437 or 705 µmol mol-1, respectively). Most traits were affected by light and CO2, and by their interaction. Relative to aCa, our main findings were (i) a greater stomatal conductance (gs) (only at HL) with decreased diffusive limitations to photosynthesis, (ii) greater gs during HL-to-LL transitions, whereas gs was unresponsive to the LL-to-HL transitions irrespective of [CO2], (iii) greater leaf nitrogen pools (only at HL) and higher photosynthetic nitrogen-use efficiency irrespective of light, (iv) lack of photosynthetic acclimation, and (v) greater biomass partitioning to roots and earlier branching. In summary, eCa improved plant growth and photosynthetic performance. Our novel and timely findings suggest that coffee plants are highly suited for a changing climate characterized by a progressive elevation of [CO2], especially if the light is nonlimiting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA