Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 186: 116411, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32949887

RESUMEN

Cities are wrestling with the practical challenges of transitioning urban water services to become water sensitive; capable of enhancing liveability, sustainability, resilience and productivity in the face of climate change, rapid urbanisation, degraded ecosystems and ageing infrastructure. Indicators can be valuable for guiding actions for improvement, but there is not yet an established index that measures the full suite of attributes that constitute water sensitive performance. This paper therefore presents the Water Sensitive Cities (WSC) Index, a new benchmarking and diagnostic tool to assess the water sensitivity of a municipal or metropolitan city, set aspirational targets and inform management responses to improve water sensitive practices. Its 34 indicators are organised into seven goals: ensure good water sensitive governance, increase community capital, achieve equity of essential services, improve productivity and resource efficiency, improve ecological health, ensure quality urban spaces, and promote adaptive infrastructure. The WSC Index design is a quantitative framework based on qualitative rating descriptions and a participatory assessment methodology, enabling local contextual interpretations of the indicators while maintaining a robust universal framework for city comparison and benchmarking. The paper demonstrates its application on three illustrative cases. Rapid uptake of the WSC Index in Australia highlights its value in helping stakeholders develop collective commitment and evidence-based priorities for action to accelerate their city's water sensitive transition. Early testing in cities in Asia, the Pacific and South Africa has also showed the potential of the WSC Index internationally.


Asunto(s)
Ecosistema , Agua , Australia , Ciudades , Sudáfrica
2.
Water Res X ; : 100063, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32875284

RESUMEN

Cities are wrestling with the practical challenges of transitioning urban water services to become water sensitive; capable of enhancing liveability, sustainability, resilience and productivity in the face of climate change, rapid urbanisation, degraded ecosystems and ageing infrastructure. Indicators can be valuable for guiding actions for improvement, but there is not yet an established index that measures the full suite of attributes that constitute water sensitive performance. This paper therefore presents the Water Sensitive Cities (WSC) Index, a new benchmarking and diagnostic tool to assess the water sensitivity of a municipal or metropolitan city, set aspirational targets and inform management responses to improve water sensitive practices. Its 34 indicators are organised into seven goals: ensure good water sensitive governance, increase community capital, achieve equity of essential services, improve productivity and resource efficiency, improve ecological health, ensure quality urban spaces, and promote adaptive infrastructure. The WSC Index design as a quantitative framework based on qualitative rating descriptions and a participatory assessment methodology enables local contextual interpretations of the indicators, while maintaining a robust universal framework for city comparison and benchmarking. The paper demonstrates its application on three illustrative cases. Rapid uptake of the WSC Index in Australia highlights its value in helping stakeholders develop collective commitment and evidence-based priorities for action to accelerate their city's water sensitive transition. Early testing in cities in Asia and the Pacific has also showed the potential of the WSC Index internationally.

3.
Water Res ; 126: 501-514, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031187

RESUMEN

Long term planning of urban water infrastructure requires acknowledgement that transitions in the water system are driven by changes in the urban environment, as well as societal dynamics. Inherent to the complexity of these underlying processes is that the dynamics of a system's evolution cannot be explained by linear cause-effect relationships and cannot be predicted under narrow sets of assumptions. Planning therefore needs to consider the functional behaviour and performance of integrated flexible infrastructure systems under a wide range of future conditions. This paper presents the first step towards a new generation of integrated planning tools that take such an exploratory planning approach. The spatially explicit model, denoted DAnCE4Water, integrates urban development patterns, water infrastructure changes and the dynamics of socio-institutional changes. While the individual components of the DAnCE4Water model (i.e. modules for simulation of urban development, societal dynamics and evolution/performance of water infrastructure) have been developed elsewhere, this paper presents their integration into a single model. We explain the modelling framework of DAnCE4Water, its potential utility and its software implementation. The integrated model is validated for the case study of an urban catchment located in Melbourne, Australia.


Asunto(s)
Planificación de Ciudades , Drenaje de Agua , Modelos Teóricos , Remodelación Urbana , Abastecimiento de Agua , Australia , Programas Informáticos , Agua
4.
Water Sci Technol ; 67(10): 2160-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23676383

RESUMEN

Urban water systems will be increasingly challenged under future climates and global pressures. Meeting challenges by reconfiguring water systems to integrate supplies and deliver multifunctional uses is technically well described. Adjusting the institutions that frame the management of these systems is not well operationalized in practice or conceptualized in theory. This study seeks to address this gap through an institutional analysis of Perth, Australia, a city where drought crisis has put under pressure both management practices and the institutional setting that underlies them. The study found that while trusted practices moderated water scarcity, the stability of the institutional setting may not facilitate a shift toward adaptable institutional configurations suited to future conditions. The results identified three key ingredients for a flexible institutional setting: (i) feedbacks in the system through better information management, (ii) reflexive dialogue and strategic use of projects to generate greater learning opportunities, and (iii) policy level support for sector-wide collaboration through progressive agendas, incentives for innovation and capacity building in stakeholder and community engagement. Further, the results suggest that a deeper understanding of institutional dynamics is needed to enable adaptive governance. The paper provides an analytical framework for diagnosing how greater adaptive capacity might be mobilized through influencing these dynamics.


Asunto(s)
Sequías , Abastecimiento de Agua , Australia Occidental
5.
Water Sci Technol ; 67(8): 1708-17, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23579824

RESUMEN

A shift towards sustainable urban water management is widely advocated but poorly understood. There is a growing body of literature claiming that social learning is of high importance in restructuring conventional systems. In particular, governance experimentation, which explicitly aims for social learning, has been suggested as an approach for enabling the translation of sustainability ideas into practice. This type of experimentation requires a very different dynamic within societal relations and necessitates a changed role for professionals engaged in such a process. This empirically focused paper investigates a contemporary governance experiment, the Cooks River Sustainability Initiative, and determines its outcome in terms of enabling social learning for attaining sustainable water practice in an urban catchment. Drawing on the qualitative insights of the actors directly involved in this novel process, this paper provides evidence of changes in individual and collective understanding generated through diverse forms of social interaction. Furthermore, the research reveals perceived key-factors that foster and/or hamper the execution of this new form of experimentation, including project complexity, resource intensity and leadership. Overall, this paper highlights that, while implementation of governance experimentation in a conventional setting can be highly challenging, it can also be highly rewarding in terms of learning.


Asunto(s)
Conservación de los Recursos Naturales , Abastecimiento de Agua , Conducta Cooperativa , Aprendizaje , Nueva Gales del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...