Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vet Parasitol ; 331: 110282, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116545

RESUMEN

This study assessed the in vitro anthelmintic activity of ethyl acetate extract (Cn-EtOAc) and its bioactive fractions (CnR3 and CnR5) obtained from Chamaecrista nictitans aerial parts against two Haemonchus contortus (Hc) isolates, one resistant (strain HcIVM-R) and another susceptible (strain HcIVM-S) to ivermectin. Ferulic acid and p-coumaric acid were identified in the bioactive fractions; therefore, their commercial standards were also assessed. A colocalization analysis between the ferulic acid commercial standard and eggs of the HcIVM-R strain was performed using confocal laser scanning microscopy and the ImageJ program. The ovicidal effects of the Cn-EtOAc extract, bioactive fractions and commercial compounds were tested through the egg hatching inhibition (EHI) assay on H. contortus isolates HcIVM-R and HcIVM-S. The Cn-EtOAc caused 88 % and 92 % EHI at 5000 µg/mL on HcIVM-R and HcIVM-S, respectively. Fractions CnR3 and CnR5 displayed the highest ovicidal activity against HcIVM-S, with effective concentrations (EC90) of 2134 and 601 µg/mL, respectively. Meanwhile, the commercial standards ferulic acid and p-coumaric acid also resulted in higher effectiveness on the same strain, with EC90 of 57.5 and 51.1 µg/mL. A colocalization analysis of ferulic acid and eggs of HcIVM-R revealed that this compound is localized to the cuticle surface of the embryo inside the egg parasite. The results demonstrated that both ferulic and p-coumaric acids interrupt the egg-hatching processes of the two Hc isolates. Both phenolic acids isolated from C. nictitans and commercial standards exhibited the best anthelmintic effect on HcIVM-S. These findings indicate that the phenolic acids were less effective in egg hatch inhibiting on the HcIVM-R strain compared to the HcIVM-S strain.


Asunto(s)
Antihelmínticos , Ácidos Cumáricos , Haemonchus , Extractos Vegetales , Animales , Haemonchus/efectos de los fármacos , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Antihelmínticos/farmacología , Antihelmínticos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Óvulo/efectos de los fármacos
2.
Food Chem ; 458: 140196, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38943953

RESUMEN

The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.


Asunto(s)
Digestión , Germinación , Lupinus , Almidón , Difracción de Rayos X , Zea mays , Zea mays/química , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo , Lupinus/química , Lupinus/metabolismo , Lupinus/crecimiento & desarrollo , Almidón/química , Almidón/metabolismo , Harina/análisis , Viscosidad , Semillas/química , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Manipulación de Alimentos
3.
Sci Total Environ ; 828: 154434, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35278555

RESUMEN

The present study establishes a new procedure to characterize micro(nano)plastics (MNPs) and identify contaminants adhered to the plastic particles in aquatic environments by applying ultra-high resolution microscopy and spectroscopy techniques. Naturally fragmented microplastics (MPs) were collected from Manzanillo and Santiago Bays, Mexico and analyzed using: Confocal Laser Scanning Microscopy (CLSM), Fourier-Transform Infrared Spectroscopy (FTIR), µ-RAMAN, Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Environmental Electron Scanning Microscopy (ESEM). The information obtained from each of these techniques was integrated to produce a comprehensive profile of each particle. Sample preparation was tested by applying three different rinses (unrinsed, distilled water and alcohol) to untreated MPs collected from Manzanillo Bay, finding that when large impurities are present an alcohol rinse makes it easier to examine the associated contaminants. Based on this emerging methodology, polyethylene and polypropylene MPs were identified with associated contaminants such as arsenic, cadmium, aluminum, and benzene. This study demonstrates the presence of pollutants that may be linked to MNPs in aquatic ecosystems and proposes an accurate relatively fast procedure for their analysis that does not require chemical extraction.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente/métodos , Plásticos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA