Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; : e202402100, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327235

RESUMEN

Microorganisms can induce diseases with significant clinical implications for human health. Multidrug-resistant microorganisms have been on the rise worldwide over the past few decades, and no new antibiotics have been introduced to the market in a considerable amount of time. Such situation highlights the urgency of discovering new antimicrobial drugs to address this pressing issue. Therefore, the objective of this study was to identify bioactive compounds against 15 species of bacteria and 5 species of fungi of clinical relevance through in vitro screening of 58 synthetic compounds from four chemical classes of our internal library of synthetic compounds. Our findings highlight arylpiperazines 18, 20, 26, 27, and 29, and the aminothiazole 50, as potent broad-spectrum antimicrobials (MICs = 12.5 - 15.6 mg.mL-1) against clinically relevant bacteria and fungi. Additionally, these compounds displayed low cytotoxicity against various host cells and a favorable in vitro pharmacokinetic profile for oral administration. Indeed, all six showed adequate lipophilicity, high gastrointestinal permeability, metabolic stability in human and mouse liver microsomes, and satisfactory aqueous solubility. Thus, they emerge as promising starting points for hit-to-lead studies towards new antibacterial and antifungal agents, especially against Staphylococcus epidermidis, Staphylococcus aureus, Lactobacillus paracasei and Candida orthopsilosis.

2.
ChemMedChem ; 19(20): e202400293, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-38924252

RESUMEN

This study introduces further insights from the hit-to-lead optimization process involving a series of benzimidazole derivatives acting as inhibitors of the cruzain enzyme, which targets Trypanosoma cruzi, the causative parasite of Chagas disease. Here, we present the design, synthesis and biological evaluation of 30 new compounds as a third generation of benzimidazole analogues with trypanocidal activity, aiming to enhance our understanding of their pharmacokinetic profiles and establish a structure-metabolism relationships within the series. The design of these new analogues was guided by the analysis of previous pharmacokinetic results, considering identified metabolic sites and biotransformation studies. This optimization resulted in the discovery of two compounds (42 e and 49 b) exhibiting enhanced metabolic stability, anti-Trypanosoma cruzi activity compared to benznidazole (the reference drug for Chagas disease), as well as being non-cruzain inhibitors, and demonstrating a satisfactory in vitro pharmacokinetic profile. These findings unveil a new subclass of aminobenzimidazole and rigid compounds, which offer potential for further exploration in the quest for discovering novel classes of antichagasic compounds.


Asunto(s)
Bencimidazoles , Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/síntesis química , Relación Estructura-Actividad , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Enfermedad de Chagas/tratamiento farmacológico , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Humanos , Animales , Relación Dosis-Respuesta a Droga
3.
Expert Opin Drug Discov ; 19(6): 741-753, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38715393

RESUMEN

INTRODUCTION: Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED: Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION: Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.


Asunto(s)
Enfermedad de Chagas , Descubrimiento de Drogas , Resistencia a Medicamentos , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Nitroimidazoles/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Tripanocidas/farmacología , Humanos , Animales , Descubrimiento de Drogas/métodos , Desarrollo de Medicamentos
4.
Bioorg Med Chem ; 105: 117736, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677111

RESUMEN

Leishmaniasis and Chagas disease are neglected tropical diseases caused by Trypanosomatidae parasites. Given the numerous limitations associated with current treatments, such as extended treatment duration, variable efficacy, and severe side effects, there is an urgent imperative to explore novel therapeutic options. This study details the early stages of hit-to-lead optimization for a benzenesulfonyl derivative, denoted as initial hit, against Trypanossoma cruzi (T. cruzi), Leishmania infantum (L. infantum) and Leishmania braziliensis (L. braziliensis). We investigated structure - activity relationships using a series of 26 newly designed derivatives, ultimately yielding potential lead candidates with potent low-micromolar and sub-micromolar activities against T. cruzi and Leishmania spp, respectively, and low in vitro cytotoxicity against mammalian cells. These discoveries emphasize the significant promise of this chemical class in the fight against Chagas disease and leishmaniasis.


Asunto(s)
Diseño de Fármacos , Leishmania infantum , Pruebas de Sensibilidad Parasitaria , Trypanosoma cruzi , Trypanosoma cruzi/efectos de los fármacos , Leishmania infantum/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Relación Dosis-Respuesta a Droga , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Humanos , Animales , Sulfonas/farmacología , Sulfonas/síntesis química , Sulfonas/química
5.
Chem Biol Drug Des ; 103(4): e14525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38627214

RESUMEN

An early exploration of the benzothiazole class against two kinetoplastid parasites, Leishmania infantum and Trypanosoma cruzi, has been performed after the identification of a benzothiazole derivative as a suitable antileishmanial initial hit. The first series of derivatives focused on the acyl fragment of its class, evaluating diverse linear and cyclic, alkyl and aromatic substituents, and identified two other potent compounds, the phenyl and cyclohexyl derivatives. Subsequently, new compounds were designed to assess the impact of the presence of diverse substituents on the benzothiazole ring or the replacement of the endocyclic sulfur by other heteroatoms. All compounds showed relatively low cytotoxicity, resulting in decent selectivity indexes for the most active compounds. Ultimately, the in vitro ADME properties of these compounds were assessed, revealing a satisfying water solubility, gastrointestinal permeability, despite their low metabolic stability and high lipophilicity. Consequently, compounds 5 and 6 were identified as promising hits for further hit-to-lead exploration within this benzothiazole class against L. infantum, thus providing promising starting points for the development of antileishmanial candidates.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Trypanosoma cruzi , Antiprotozoarios/farmacología , Benzotiazoles/farmacología
6.
Bioorg Med Chem ; 95: 117488, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812885

RESUMEN

Zika virus infection is associated to severe diseases such as congenital microcephaly and Zika fever causing serious harm to humans and special concern to health systems in low-income countries. Currently, there are no approved drugs against the virus, and the development of anti-Zika virus drugs is thus urgent. The present investigation describes the discovery and hit expansion of a N-acyl-2-aminobenzothiazole series of compounds against Zika virus replication. A structure-activity relationship study was obtained with the synthesis and evaluation of anti-Zika virus activity and cytotoxicity on Vero cells of nineteen derivatives. The three optimized compounds were 2.2-fold more potent than the initial hit and 20.9, 7.7 and 6.4-fold more selective. Subsequent phenotypic and biochemical assays were performed to evidence whether non-structural proteins, such as the complex NS2B-NS3pro, are related to the mechanism of action of the most active compounds.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Chlorocebus aethiops , Humanos , Células Vero , Infección por el Virus Zika/tratamiento farmacológico , Relación Estructura-Actividad , Replicación Viral , Antivirales/química , Proteínas no Estructurales Virales
7.
Eur J Med Chem ; 246: 114925, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36459758

RESUMEN

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. Because current treatments present several limitations, including long duration, variable efficacy and serious side effects, there is an urgent need to explore new antitrypanosomal drugs. The present study describes the hit-to-lead optimization of a 2-aminobenzimidazole hit 1 identified through in vitro phenotypic screening of a chemical library against intracellular Trypanosoma cruzi amastigotes, which focused on optimizing potency, selectivity, microsomal stability and lipophilicity. Multiparametric Structure-Activity Relationships were investigated using a set of 277 derivatives. Although the physicochemical and biological properties of the initial hits were improved, a combination of low kinetic solubility and in vitro cytotoxicity against mammalian cells prevented progression of the best compounds to an efficacy study using a mouse model of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Animales , Tripanocidas/química , Enfermedad de Chagas/tratamiento farmacológico , Relación Estructura-Actividad , Mamíferos
8.
ChemMedChem ; 17(19): e202200211, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35993440

RESUMEN

Chagas disease is a neglected tropical disease, endemic in Latin America and caused by the protozoan parasite Trypanosoma cruzi. Available treatments show low cure efficacy during the chronic phase of the disease and cause a series of side effects, reinforcing the need to develop new drugs against Chagas disease. In this work, we describe the optimization of a trypanocidal hit compound recently reported in phenotypic high-throughput screening studies against Trypanosoma cruzi. A hit-to-lead process was initiated and a structure-activity relationship against Trypanosoma cruzi was obtained after the synthesis and biological evaluation of 22 new benzenesulfonylpiperazine derivatives. From this structure-activity relationship study, we identified three compounds with a promising predicted ADMET profile and potency comparable to the reference drug benznidazole, which are candidates for further development towards therapies for Chagas disease.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Relación Estructura-Actividad
9.
Biomolecules ; 11(4)2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920961

RESUMEN

Natural products based on imidazole scaffolds have inspired the discovery of a wide variety of bioactive compounds. Herein, a series of imidazoles that act as competitive and potent cruzain inhibitors was investigated using a combination of ligand- and structure-based drug design strategies. Quantitative structure-activity relationships (QSARs) were generated along with the investigation of enzyme-inhibitor molecular interactions. Predictive hologram QSAR (HQSAR, r2pred = 0.80) and AutoQSAR (q2 = 0.90) models were built, and key structural properties that underpin cruzain inhibition were identified. Moreover, comparative molecular field analysis (CoMFA, r2pred = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2pred = 0.73) revealed 3D molecular features that strongly affect the activity of the inhibitors. These findings were examined along with molecular docking studies and were highly compatible with the intermolecular contacts that take place between cruzain and the inhibitors. The results gathered herein revealed the main factors that determine the activity of the imidazoles studied and provide novel knowledge for the design of improved cruzain inhibitors.


Asunto(s)
Cisteína Endopeptidasas/química , Imidazoles/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/química , Proteínas Protozoarias/química , Relación Estructura-Actividad Cuantitativa , Sitios de Unión , Cisteína Endopeptidasas/metabolismo , Diseño de Fármacos , Imidazoles/química , Inhibidores de Proteasas/farmacología , Unión Proteica , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo
10.
J Chem Inf Model ; 60(2): 1028-1041, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-31765144

RESUMEN

A virtual screening conducted with nearly 4 000 000 compounds from lead-like and fragment-like subsets enabled the identification of a small-molecule inhibitor (1) of the Trypanosoma cruzi cruzain enzyme, a validated drug target for Chagas disease. Subsequent comprehensive structure-based drug design and structure-activity relationship studies led to the discovery of carbamoyl imidazoles as potent, reversible, and competitive cruzain inhibitors. The most potent carbamoyl imidazole inhibitor (45) exhibited high affinity with a Ki value of 20 nM, presenting both in vitro and in vivo activity against T. cruzi. Furthermore, the most promising compounds reduced parasite burden in vivo and showed no toxicity at a dose of 100 mg/kg. These carbamoyl imidazoles are structurally attractive, nonpeptidic, and easy to prepare and synthetically modify. Finally, these results further advance our understanding of the noncovalent mode of inhibition of this pharmaceutically relevant enzyme, building strong foundations for drug discovery efforts.


Asunto(s)
Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Diseño de Fármacos , Proteínas Protozoarias/antagonistas & inhibidores , Tripanocidas/química , Tripanocidas/farmacología , Cisteína Endopeptidasas/química , Modelos Moleculares , Conformación Proteica , Proteínas Protozoarias/química , Relación Estructura-Actividad , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma cruzi/enzimología
11.
J Org Chem ; 84(19): 12344-12357, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31480837

RESUMEN

The studies culminating in the synthesis of two large subunits of tautomycetin are described. The first one, fragment C1-C12 that has an anti-1,3-dimethyl system and a terminal diene unit, was accomplished in 10 linear steps in 7.4% overall yield. The second one, fragment C13-C25 which bears the sensitive anhydride framework and the majority of the stereogenic centers, was prepared in 13 linear steps (longest sequence) in 8% overall yield. Among the key transformations used, a regioselective epoxide opening, a Pd-catalyzed addition of terminal alkyne to acceptor alkyne, a Mukaiyama aldol reaction, a Yamaguchi esterification, and a homemade mild di-esterification can be cited. The chosen strategies allowed good yields, stereoselectivity, reproducibility, and scalability for several important intermediates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA