RESUMEN
OBJECTIVES: The isolated Príncipe is at the malaria pre-elimination stage. Autochthonous clinical cases have been reported sporadically on the island, signaling the possibility of a sizable subpatent (i.e., rapid diagnostic test- and microscopy-negative and polymerase chain reaction [PCR]-positive) parasite reservoir. METHODS: Asymptomatic low-density infections were detected by quantitative PCR (qPCR) targeting Plasmodium falciparum multicopy genes (pfr364 and varATS). Positivity rates were assayed for samples surveyed by active case detection (n = 112) and reactive case detection (n = 221) in 2022. RESULTS: qPCR unveiled 70% of low parasitemia carriers, reaching >90% in reactive case detection. The high P. falciparum prevalence was confirmed by the two high-sensitivity qPCR protocols. Higher positivity rates were observed in the localities where most malaria cases were reported in 2022. Most parasitemias were very low (<2 Pf /µl). CONCLUSIONS: These findings suggest that pre-elimination surveillance can benefit from the routine application of highly sensitive tools to unveil otherwise invisible but potentially relevant parasite populations.
Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Prevalencia , Reservorios de Enfermedades/parasitología , Parasitemia/epidemiología , Parasitemia/diagnóstico , Parasitemia/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , Femenino , Adulto , Niño , Adolescente , Preescolar , Adulto JovenRESUMEN
Introduction: Zoonotic transmission is a challenge for the control and elimination of malaria. It has been recorded in the Atlantic Forest, outside the Amazon which is the endemic region in Brazil. However, only very few studies have assessed the antibody response, especially of IgM antibodies, in Neotropical primates (NP). Therefore, in order to contribute to a better understanding of the immune response in different hosts and facilitate the identification of potential reservoirs, in this study, naturally acquired IgM antibody responses against Plasmodium antigens were evaluated, for the first time, in NP from the Atlantic Forest. Methods: The study was carried out using 154 NP samples from three different areas of the Atlantic Forest. IgM antibodies against peptides of the circumsporozoite protein (CSP) from different Plasmodium species and different erythrocytic stage antigens were detected by ELISA. Results: Fifty-nine percent of NP had IgM antibodies against at least one CSP peptide and 87% against at least one Plasmodium vivax erythrocytic stage antigen. Levels of antibodies against PvAMA-1 were the highest compared to the other antigens. All families of NP showed IgM antibodies against CSP peptides, and, most strikingly, against erythrocytic stage antigens. Generalized linear models demonstrated that IgM positivity against PvCSP and PvAMA-1 was associated with PCR-detectable blood-stage malaria infection and the host being free-living. Interestingly, animals with IgM against both PvCSP and PvAMA-1 were 4.7 times more likely to be PCR positive than animals that did not have IgM for these two antigens simultaneously. Discussion: IgM antibodies against different Plasmodium spp. antigens are present in NP from the Atlantic Forest. High seroprevalence and antibody levels against blood-stage antigens were observed, which had a significant association with molecular evidence of infection. IgM antibodies against CSP and AMA-1 may be used as a potential marker for the identification of NP infected with Plasmodium, which are reservoirs of malaria in the Brazilian Atlantic Forest.
Asunto(s)
Malaria , Plasmodium , Animales , Brasil/epidemiología , Formación de Anticuerpos , Proteínas Protozoarias , Inmunoglobulina M , Estudios Seroepidemiológicos , Antígenos de Protozoos , Malaria/veterinaria , Primates , Bosques , Anticuerpos Antiprotozoarios , Péptidos , Plasmodium vivaxRESUMEN
BACKGROUND: Plasmodium species of non-human primates (NHP) are of great interest because they can naturally infect humans. Plasmodium simium, a parasite restricted to the Brazilian Atlantic Forest, was recently shown to cause a zoonotic outbreak in the state of Rio de Janeiro. The potential of NHP to act as reservoirs of Plasmodium infection presents a challenge for malaria elimination, as NHP will contribute to the persistence of the parasite. The aim of the current study was to identify and quantify gametocytes in NHP naturally-infected by P. simium. METHODS: Whole blood samples from 35 NHP were used in quantitative reverse transcription PCR (RT-qPCR) assays targeting 18S rRNA, Pss25 and Pss48/45 malaria parasite transcripts. Absolute quantification was performed in positive samples for 18S rRNA and Pss25 targets. Linear regression was used to compare the quantification cycle (Cq) and the Spearman's rank correlation coefficient was used to assess the correlation between the copy numbers of 18S rRNA and Pss25 transcripts. The number of gametocytes/µL was calculated by applying a conversion factor of 4.17 Pss25 transcript copies per gametocyte. RESULTS: Overall, 87.5% of the 26 samples, previously diagnosed as P. simium, were positive for 18S rRNA transcript amplification, of which 13 samples (62%) were positive for Pss25 transcript amplification and 7 samples (54%) were also positive for Pss48/45 transcript. A strong positive correlation was identified between the Cq of the 18S rRNA and Pss25 and between the Pss25 and Pss48/45 transcripts. The 18S rRNA and Pss25 transcripts had an average of 1665.88 and 3.07 copies/µL, respectively. A positive correlation was observed between the copy number of Pss25 and 18S rRNA transcripts. Almost all gametocyte carriers exhibited low numbers of gametocytes (< 1/µL), with only one howler monkey having 5.8 gametocytes/µL. CONCLUSIONS: For the first time, a molecular detection of P. simium gametocytes in the blood of naturally-infected brown howler monkeys (Alouatta guariba clamitans) was reported here, providing evidence that they are likely to be infectious and transmit P. simium infection, and, therefore, may act as a reservoir of malaria infection for humans in the Brazilian Atlantic Forest.
Asunto(s)
Malaria , Plasmodium , Animales , Humanos , ARN Ribosómico 18S/genética , Brasil/epidemiología , Plasmodium/genética , Malaria/epidemiología , Malaria/veterinaria , Malaria/parasitología , Primates/genética , Bosques , Plasmodium falciparum/genéticaRESUMEN
Early diagnosis and treatment are fundamental to the control and elimination of malaria. In many endemic areas, routine diagnosis is primarily performed microscopically, although rapid diagnostic tests (RDTs) provide a useful point-of-care tool. Most of the commercially available RDTs detect histidine-rich protein 2 (HRP2) of Plasmodium falciparum in the blood of infected individuals. Nonetheless, parasite isolates lacking the pfhrp2 gene are relatively frequent in some endemic regions, thereby hampering the diagnosis of malaria using HRP2-based RDTs. To track the efficacy of RDTs in areas of the Brazilian Amazon, we assessed pfhrp2 deletions in 132 P. falciparum samples collected from four malaria-endemic states in Brazil. Our findings show low to moderate levels of pfhrp2 deletion in different regions of the Brazilian Amazon. Overall, during the period covered by this study (2002-2020), we found that 10% of the P. falciparum isolates were characterized by a pfhrp2 deletion. Notably, however, the presence of pfhrp2-negative isolates has not been translated into a reduction in RDT efficacy, which in part may be explained by the presence of polyclonal infections. A further important finding was the discrepancy in the proportion of pfhrp2 deletions detected using two assessed protocols (conventional PCR versus nested PCR), which reinforces the need to perform a carefully planned laboratory workflow to assess gene deletion. This is the first study to perform a comprehensive analysis of PfHRP2 sequence diversity in Brazilian isolates of P. falciparum. We identified 10 PfHRP2 sequence patterns, which were found to be exclusive of each of the assessed regions. Despite the small number of PfHRP2 sequences available from South America, we found that the PfHRP2 sequences identified in Brazil and neighboring French Guiana show similar sequence patterns. Our findings highlight the importance of continuously monitoring the occurrence and spread of parasites with pfrhp2 deletions, while also taking into account the limitations of PCR-based testing methods associated with accuracy and the complexity of infections.
Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Antígenos de Protozoos/genética , Brasil , Pruebas Diagnósticas de Rutina , Eliminación de Gen , Histidina , Humanos , Malaria Falciparum/diagnóstico , Plasmodium falciparum/genética , Proteínas Protozoarias/genéticaRESUMEN
Human malaria due to zoonotic transmission has been recorded in the Atlantic Forest, an extra-Amazonian area in Brazil, which are a challenge for malaria control. Naturally acquired humoral immune response against pre-erythrocytic and erythrocytic antigens of Neotropical primates (NP) was evaluated here to improve the knowledge about the exposure of those animals to the malaria transmission and support the identification of the potential reservoirs of the disease in the Atlantic Forest. Blood samples of 154 monkeys from three areas of the Atlantic Forest were used to identify IgG antibodies against peptides of the repeat region of the major pre-erythrocytic antigen, the circumsporozoite protein (CSP), of Plasmodium vivax (PvCSP), Plasmodium brasilianum/Plasmodium malariae (Pb/PmCSP), and Plasmodium falciparum (PfCSP) by ELISA. Antibodies against erythrocytic recombinant antigens of P. vivax, Apical membrane antigen 1 (PvAMA-1), Erythrocyte binding protein 2 (PvEBP-2) and domain II of Duffy binding protein (PvDBPII) were also evaluated. Parameters, such as age, sex, PCR positivity, and captivity, potentially associated with humoral immune response were analyzed. Eighty-five percent of NP had antibodies against at least one CSP peptide, and 76% against at least one P. vivax erythrocytic antigen. A high percentage of adults compared to non-adults were seropositive and showed increased antibody levels. Neotropical primates with PCR positive for P. simium had a significantly higher frequency of positivity rate for immune response against PvEBP-2, PvDBPII and also higher antibody levels against PvDBPII, compared to PCR negative NPs for this species. Monkeys with PCR positive for P. brasilianum/P. malariae showed higher frequency of seropositivity and antibody levels against Pb/PmCSP. Levels of antibodies against Pb/PmCSP, PvEBP-2 and PvDBPII were higher in free-living than in captive monkeys from the same area. All Platyrrhine families showed antibodies against CSP peptides, however not all showed IgG against erythrocytic antigens. These findings showed a high prevalence of naturally acquired antibodies against CSP repeats in all studied areas, suggesting an intense exposure to infected-mosquitoes bites of NP from all families. However, mainly monkeys of Atelidae family showed antibodies against P. vivax erythrocytic antigens, suggesting blood infection, which might serve as potential reservoirs of malaria in the Atlantic Forest.
Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Brasil , Eritrocitos , Bosques , Inmunidad Humoral , Malaria/veterinaria , Plasmodium vivax , Primates , Proteínas ProtozoariasRESUMEN
BACKGROUND: Activation of hypnozoites of vivax malaria causes multiple clinical relapses, which contribute to the Plasmodium vivax burden and continuing transmission. Artemisinin-based combination therapy (ACT) is effective against blood-stage P. vivax but requires co-administration with primaquine to achieve radical cure. The therapeutic efficacy of primaquine depends on the generation of a therapeutically active metabolite via cytochrome P450 2D6 (CYP2D6). Impaired CYP2D6 metabolism has been associated with primaquine treatment failure. This study investigated the association between impaired CYP2D6 genotypes, drug-exposure to the long-acting ACT component (schizonticidal drugs) and tolerance and efficacy. METHODS: Adult patients with acute vivax malaria were enrolled in a recently completed trial and treated with artesunate-mefloquine, chloroquine or artemether-lumefantrine. All received concomitant primaquine (0.5 mg/kg/day for 7-9 days). The association between efficacy and safety and drug exposure was explored using area-under-the-curve (AUC) and half-life (t1/2) estimates obtained by non-compartmental analysis of the long half-life drugs. Parasite recurrences by day 63 were categorized as related relapses or re-infections/unrelated hypnozoite activation by genotyping three microsatellite loci and two polymorphic loci of merozoite surface antigen-1. The CYP2D6 genotype was identified with Taqman assays by real-time PCR to 9 polymorphisms (8 SNPs and one deletion). Impaired CYP2D6 activity was inferred using the Activity Score System. RESULTS: Most recurrences in the ASMQ (67%), CQ (80%) and AL (85%) groups were considered related relapses. Eight of nine (88.9%) of the patients with impaired CYP2D6 activity relapsed with related parasite compared to 18/25 (72%) with normal activity (RR = 1.23, 0.88; 1.72, p = 0.40). There were no associations between the measured PK parameters and recurrence. Patients with longer chloroquine half-lives had more pruritus (RR = 1.09, 1.03; 1.14, p = 0.001). Higher CQ AUCs were associated with reduced falls in haemoglobin by day 14 (Coef - 0.02, - 0.005; - 0.03, p = 0.01). All regimens were well tolerated. CONCLUSION: Genotyping of P. vivax showed that activation of related (homologous) hypnozoites was the most frequent cause of recurrence. The high proportion of the impaired CYP2D6 activity among patients with recurrent infections suggests that slow primaquine metabolism might influence related relapse rates in Brazil among patients receiving primaquine for radical cure, although confirmatory studies are needed. There was no association between drug exposure of the long-acting ACT component (schizonticidal drugs) and risk of related relapse. ACT was well tolerated. These results provide further re-assurance about the safety and efficacy of ACT when combined with short course primaquine to treat uncomplicated malaria vivax in Brazil. Trial registration RBR-79s56s ( http://www.ensaiosclinicos.gov.br/rg/RBR-79s56s/ ).
Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Primaquina/farmacología , Adulto , Anciano , Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Brasil , Cloroquina/farmacocinética , Combinación de Medicamentos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Primaquina/farmacocinética , Adulto JovenRESUMEN
BACKGROUND: The unexpected high proportion of submicroscopic malaria infections in areas with low transmission intensity challenges the control and elimination of malaria in the Americas. The current PCR-based assays present limitations as most protocols still rely on amplification of few-copies target gene. Here, the hypothesis was that amplification of different plasmodial targets-ribosomal (18S rRNA) and non-ribosomal multi-copy sequences (Pvr47 for Plasmodium vivax and Pfr364 for Plasmodium falciparum)-could increase the chances of detecting submicroscopic malaria infection. METHODS: A non-ribosomal real-time PCR assay targeting Pvr47/Pfr364 (NR-qPCR) was established and compared with three additional PCR protocols, two of them based on 18S rRNA gene amplification (Nested-PCR and R-qPCR) and one based on Pvr47/Pfr364 targets (NR-cPCR). The limit of detection of each PCR protocol, at single and artificial mixed P. vivax/P. falciparum infections, was determined by end-point titration curves. Field samples from clinical (n = 110) and subclinical (n = 324) malaria infections were used to evaluate the impact of using multiple molecular targets to detect malaria infections. RESULTS: The results demonstrated that an association of ribosomal and non-ribosomal targets did not increase sensitivity to detect submicroscopic malaria infections. Despite of that, artificial mixed-malaria infections demonstrated that the NR-qPCR was the most sensitive protocol to detect low-levels of P. vivax/P. falciparum co-infections. Field studies confirmed that submicroscopic malaria represented a large proportion (up to 77%) of infections among asymptomatic Amazonian residents, with a high proportion of infections (~ 20%) identified only by the NR-qPCR. CONCLUSIONS: This study presents a new species-specific non-ribosomal PCR assay with potential to identify low-density P. vivax and P. falciparum infections. As the majority of subclinical infections was caused by P. vivax, the commonest form of malaria in the Amazon area, future studies should investigate the potential of Pvr47/Pfr364 to detect mixed-malaria infections in the field.
Asunto(s)
Coinfección/diagnóstico , Malaria/diagnóstico , ARN Ribosómico 18S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto , Infecciones Asintomáticas , Brasil , Coinfección/parasitología , Femenino , Humanos , Límite de Detección , Malaria/sangre , Malaria Falciparum/sangre , Malaria Falciparum/diagnóstico , Malaria Vivax/sangre , Malaria Vivax/diagnóstico , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Adulto JovenRESUMEN
Emerging Plasmodium vivax resistance to chloroquine (CQ) may undermine malaria elimination efforts in South America. CQ-resistant P. vivax has been found in the major port city of Manaus but not in the main malaria hot spots across the Amazon Basin of Brazil, where CQ is routinely coadministered with primaquine (PQ) for radical cure of vivax malaria. Here we randomly assigned 204 uncomplicated vivax malaria patients from Juruá Valley, northwestern Brazil, to receive either sequential (arm 1) or concomitant (arm 2) CQ-PQ treatment. Because PQ may synergize the blood schizontocidal effect of CQ and mask low-level CQ resistance, we monitored CQ-only efficacy in arm 1 subjects, who had PQ administered only at the end of the 28-day follow-up. We found adequate clinical and parasitological responses in all subjects assigned to arm 2. However, 2.2% of arm 1 patients had microscopy-detected parasite recrudescences at day 28. When PCR-detected parasitemias at day 28 were considered, response rates decreased to 92.1% and 98.8% in arms 1 and 2, respectively. Therapeutic CQ levels were documented in 6 of 8 recurrences, consistent with true CQ resistance in vivo In contrast, ex vivo assays provided no evidence of CQ resistance in 49 local P. vivax isolates analyzed. CQ-PQ coadministration was not found to potentiate the antirelapse efficacy of PQ over 180 days of surveillance; however, we suggest that larger studies are needed to examine whether and how CQ-PQ interactions, e.g., CQ-mediated inhibition of PQ metabolism, modulate radical cure efficacy in different P. vivax-infected populations. (This study has been registered at ClinicalTrials.gov under identifier NCT02691910.).
Asunto(s)
Antimaláricos/uso terapéutico , Cloroquina/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Plasmodium vivax/patogenicidad , Primaquina/uso terapéutico , Adolescente , Adulto , Anciano , Brasil , Niño , Preescolar , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Plasmodium vivax/efectos de los fármacos , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: Parasite resistance to anti-malarials represents a great obstacle for malaria elimination. The majority of studies have investigated the association between single-nucleotide polymorphisms (SNPs) and drug resistance; however, it is becoming clear that the copy number variation (CNV) is also associated with this parasite phenotype. To provide a baseline for molecular surveillance of anti-malarial drug resistance in the Brazilian Amazon, the present study characterized the genetic profile of both markers in the most common genes associated with drug resistance in Plasmodium falciparum and Plasmodium vivax isolates. Additionally, these data were compared to data published elsewhere applying a systematic review of the literature published over a 20-year time period. METHODS: The genomic DNA of 67 patients infected by P. falciparum and P. vivax from three Brazilian States was obtained between 2002 and 2012. CNV in P. falciparum multidrug resistance gene-1 (pfmdr1), GTP cyclohydrolase 1 (pfgch1) and P. vivax multidrug resistance gene-1 (pvmdr1) were assessed by real-time PCR assays. SNPs in the pfmdr1 and pfcrt genes were assessed by PCR-RFLP. A literature search for studies that analysed CNP in the same genes of P. falciparum and P. vivax was conducted between May 2014 and March 2017 across four databases. RESULTS: All analysed samples of P. falciparum carried only one copy of pfmdr1 or pfgch1. Although the pfcrt K76T polymorphism, a determinant of CQ resistance, was present in all samples genotyped, the pfmdr1 N86Y was absent. For P. vivax isolates, an amplification rate of 20% was found for the pvmdr1 gene. The results of the study are in agreement with the low amplification rates for pfmdr1 gene evidenced in the Americas and Africa, while higher rates have been described in Southeast Asia. For P. vivax, very low rates of amplification for pvmdr1 have been described worldwide, with exceptions in French Guiana, Cambodia, Thailand and Brazil. CONCLUSIONS: The present study was the first to evaluate gch1 CNV in P. falciparum isolates from Brazil, showing an absence of amplification of this gene more than 20 years after the withdrawal of the Brazilian antifolates therapeutic scheme. Furthermore, the rate of pvmdr1 amplification was significantly higher than that previously reported for isolates circulating in Northern Brazil.
Asunto(s)
Resistencia a Medicamentos , Dosificación de Gen , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Plasmodium vivax/genética , Plasmodium vivax/aislamiento & purificación , Proteínas Protozoarias/genética , Adulto , Brasil , Femenino , Frecuencia de los Genes , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Longitud del Fragmento de Restricción , Polimorfismo de Nucleótido Simple , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
BACKGROUND: In Brazil, two species of Plasmodium have been described infecting non-human primates, Plasmodium brasilianum and Plasmodium simium. These species are morphologically, genetically and immunologically indistinguishable from the human Plasmodium malariae and Plasmodium vivax parasites, respectively. Plasmodium simium has been observed naturally infecting monkeys of the genera Alouatta and Brachyteles in a restricted area of the Atlantic Forest in the south and southeast regions of Brazil. However, its reported geographical distribution and the diversity of its vertebrate hosts may be underestimated, since available data were largely based on analyses by microscopic examination of peripheral blood, a method with limited sensitivity, considering the potential sub-patent feature of these infections. The present study describes, for the first time, the natural infection of P. simium in capuchin monkeys from the Brazilian Atlantic Forest. METHODS: Blood samples from 30 non-human primates belonging to nine species kept in the Primate Centre of Rio de Janeiro were collected. Fragments of spleen and liver from one dead monkey found in the neighborhoods of the Primate Centre were also analysed. Molecular diagnosis was performed by nested PCR (18SSU rRNA) and the amplified fragment was sequenced. RESULTS: Thirty per cent of the captive animals were infected with P. simium and/or P. brasilianum. The dead monkey tested positive for DNA of P. simium. For the first time, Cebinae primates (two specimens of genus Cebus and two of genus Sapajos) were found naturally infected by P. simium. The infection was confirmed by sequencing a small fragment of 18SSU rRNA. CONCLUSION: The results highlight the possibility of infection by P. simium in other species of non-human primates whose impact could be significant for the malaria epidemiology among non-human primates and, if it becomes clear that this P. simium is able to infect monkeys and, eventually, man, also for the maintenance of transmission of human malaria in the context of a zoonosis in areas under influence of the Atlantic Forest.
Asunto(s)
Cebinae , Malaria/veterinaria , Enfermedades de los Monos/epidemiología , Plasmodium/fisiología , Animales , Animales de Laboratorio , Brasil/epidemiología , Femenino , Malaria/epidemiología , Malaria/parasitología , Masculino , Enfermedades de los Monos/parasitología , Reacción en Cadena de la Polimerasa/veterinaria , PrevalenciaRESUMEN
Plasmodium vivax infects human erythrocytes through a major pathway that requires interaction between an apical parasite protein, the Duffy binding protein (PvDBP) and its receptor on reticulocytes, the Duffy antigen/receptor for chemokines (DARC). The importance of the interaction between PvDBP (region II, DBPII) and DARC to P. vivax infection has motivated our malaria research group at Oswaldo Cruz Foundation (state of Minas Gerais, Brazil) to conduct a number of immunoepidemiological studies to characterise the naturally acquired immunity to PvDBP in populations living in the Amazon rainforest. In this review, we provide an update on the immunology and molecular epidemiology of PvDBP in the Brazilian Amazon - an area of markedly unstable malaria transmission - and compare it with data from other parts of Latin America, as well as Asia and Oceania.