Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36501632

RESUMEN

Polymer nanocomposites (PNCs) attract the attention of researchers and industry because of their potential properties in widespread fields. Specifically, electrically conductive and semiconductor PNCs are gaining interest as promising materials for biomedical, optoelectronic and sensing applications, among others. Here, metallic nanoparticles (NPs) are extensively used as nanoadditives to increase the electrical conductivity of mere acrylic resin. As the in situ formation of metallic NPs within the acrylic matrix is hindered by the solubility of the NP precursors, we propose a method to increase the density of Ag NPs by using different intermediate solvents, allowing preparation of Ag/acrylic resin nanocomposites with improved electrical behaviour. We fabricated 3D structures using stereolithography (SLA) by dissolving different quantities of metal precursor (AgClO4) in methanol and in N,N-dimethylformamide (DMF) and adding these solutions to the acrylic resin. The high density of Ag NPs obtained notably increases the electrical conductivity of the nanocomposites, reaching the semiconductor regime. We analysed the effect of the auxiliary solvents during the printing process and the implications on the mechanical properties and the degree of cure of the fabricated nanocomposites. The good quality of the materials prepared by this method turn these nanocomposites into promising candidates for electronic applications.

2.
Materials (Basel) ; 15(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36295439

RESUMEN

AlxIn1-xN ternary semiconductors have attracted much interest for application in photovoltaic devices. Here, we compare the material quality of AlxIn1-xN layers deposited on Si with different crystallographic orientations, (100) and (111), via radio-frequency (RF) sputtering. To modulate their Al content, the Al RF power was varied from 0 to 225 W, whereas the In RF power and deposition temperature were fixed at 30 W and 300 °C, respectively. X-ray diffraction measurements reveal a c-axis-oriented wurtzite structure with no phase separation regardless of the Al content (x = 0-0.50), which increases with the Al power supply. The surface morphology of the AlxIn1-xN layers improves with increasing Al content (the root-mean-square roughness decreases from ≈12 to 2.5 nm), and it is similar for samples grown on both Si substrates. The amorphous layer (~2.5 nm thick) found at the interface with the substrates explains the weak influence of their orientation on the properties of the AlxIn1-xN films. Simultaneously grown AlxIn1-xN-on-sapphire samples point to a residual n-type carrier concentration in the 1020-1021 cm-3 range. The optical band gap energy of these layers evolves from 1.75 to 2.56 eV with the increase in the Al. PL measurements of AlxIn1-xN show a blue shift in the peak emission when adding the Al, as expected. We also observe an increase in the FWHM of the main peak and a decrease in the integrated emission with the Al content in room-temperature PL measurements. In general, the material quality of the AlxIn1-xN films on Si is similar for both crystallographic orientations.

3.
ACS Appl Mater Interfaces ; 14(17): 20023-20031, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438478

RESUMEN

In this work, we present a series of porous, honeycomb-patterned polymer films containing CsPbBr3 perovskite nanocrystals as light emitters prepared by the breath figure approach. Microscopy analysis of the topography and composition of the material evidence that the CsPbBr3 nanocrystals are homogeneously distributed within the polymer matrix but preferably confined inside the pores due to the fabrication process. The optical properties of the CsPbBr3 nanocrystals remain unaltered after the film formation, proving that they are stable inside the polystyrene matrix, which protects them from degradation by environmental factors. Moreover, these surfaces present highly hydrophobic behavior due to their high porosity and defined micropatterning, which is in agreement with the Cassie-Baxter model. This is evidenced by performing a proof-of-concept coating on top of 3D-printed LED lenses, conferring the material with self-cleaning properties, while the CsPbBr3 nanocrystals embedded inside the polymeric matrix maintain their luminescent behavior.

4.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335499

RESUMEN

Additive Manufacturing (AM) offers remarkable advantages in relation to traditional methods used to obtain solid structures, such as the capability to obtain customized complex geometries adapted to individual requirements. The design of novel nanocomposites suitable for AM is an excellent strategy to widen the application field of these techniques. In this work, we report on the fabrication of metal/polymer nanocomposites with enhanced optical/electrical behaviour for stereolithography (SLA). In particular, we analyse the in situ generation of Ag nanoparticles (NPs) from Ag precursors (AgNO3 and AgClO4) within acrylic resins via SLA. Transmission electron microscopy (TEM) analysis confirmed the formation of Ag NPs smaller than 5 nm in all nanocomposites, providing optical activity to the materials. A high density of Ag NPs with a good distribution through the material for the larger concentration of AgClO4 precursor tested was observed, in contrast to the isolated agglomerations found when the precursor amount was reduced to 0.1%. A significant reduction in the electrical resistivity up to four orders of magnitude was found for this material compared to the unfilled resin. However, consumption of part of the photoinitiator in the formation process of the Ag NPs contributed to a reduction in the polymerization degree of the resin and, consequently, degraded the mechanical properties of the nanocomposites. Experiments with longer curing times showed that, for the higher AgClO4 concentrations tested, post-curing times of 300 min allowed an 80% degree of polymerization to be achieved. These conditions turned these materials into promising candidates to obtain solid structures with multifunctional properties.

5.
Nanomaterials (Basel) ; 12(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35159686

RESUMEN

The smart engineering of novel semiconductor devices relies on the development of optimized functional materials suitable for the design of improved systems with advanced capabilities aside from better efficiencies. Thereby, the characterization of these materials at the highest level attainable is crucial for leading a proper understanding of their working principle. Due to the striking effect of atomic features on the behavior of semiconductor quantum- and nanostructures, scanning transmission electron microscopy (STEM) tools have been broadly employed for their characterization. Indeed, STEM provides a manifold characterization tool achieving insights on, not only the atomic structure and chemical composition of the analyzed materials, but also probing internal electric fields, plasmonic oscillations, light emission, band gap determination, electric field measurements, and many other properties. The emergence of new detectors and novel instrumental designs allowing the simultaneous collection of several signals render the perfect playground for the development of highly customized experiments specifically designed for the required analyses. This paper presents some of the most useful STEM techniques and several strategies and methodologies applied to address the specific analysis on semiconductors. STEM imaging, spectroscopies, 4D-STEM (in particular DPC), and in situ STEM are summarized, showing their potential use for the characterization of semiconductor nanostructured materials through recent reported studies.

6.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-34299086

RESUMEN

Multiphoton photoreduction of photosensitive metallic precursors via direct laser writing (DLW) is a promising technique for the synthesis of metallic structures onto solid substrates at the sub-micron scale. DLW triggered by a two photon absorption process is done using a femtosecond NIR laser (λ = 780 nm), tetrachloroauric acid (HAuCl4) as a gold precursor, and isinglass as a natural hydrogel matrix. The presence of a polymeric, transparent matrix avoids unwanted diffusive processes acting as a network for the metallic nanoparticles. After the writing process, a bath in deionized water removes the gold precursor ions and eliminates the polymer matrix. Different aspects underlying the growth of the gold nanostructures (AuNSs) are here investigated to achieve full control on the size and density of the AuNSs. Writing parameters (laser power, exposure time, and scanning speed) are optimized to control the patterns and the AuNSs size. The influence of a second bath containing Au3+ to further control the size and density of the AuNSs is also investigated, observing that these AuNSs are composed of individual gold nanoparticles (AuNPs) that grow individually. A fine-tuning of these parameters leads to an important improvement of the created structures' quality, with a fine control on size and density of AuNSs.


Asunto(s)
Oro/química , Rayos Láser , Nanopartículas del Metal/química , Polímeros/química , Difusión , Iones , Nanopartículas del Metal/efectos de la radiación , Nanoestructuras
7.
Materials (Basel) ; 14(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925320

RESUMEN

Compact Al0.37In0.63N layers were grown by radiofrequency sputtering on bare and 15 nm-thick AlN-buffered Si (111) substrates. The crystalline quality of the AlInN layers was studied by high-resolution X-ray diffraction measurements and transmission electron microscopy. Both techniques show an improvement of the structural properties when the AlInN layer is grown on a 15 nm-thick AlN buffer. The layer grown on bare silicon exhibits a thin amorphous interfacial layer between the substrate and the AlInN, which is not present in the layer grown on the AlN buffer layer. A reduction of the density of defects is also observed in the layer grown on the AlN buffer.

8.
ACS Photonics ; 7(11): 3152-3160, 2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33241076

RESUMEN

Manipulation of the exciton emission rate in nanocrystals of lead halide perovskites (LHPs) was demonstrated by means of coupling of excitons with a hyperbolic metamaterial (HMM) consisting of alternating thin metal (Ag) and dielectric (LiF) layers. Such a coupling is found to induce an increase of the exciton radiative recombination rate by more than a factor of three due to the Purcell effect when the distance between the quantum emitter and HMM is nominally as small as 10 nm, which coincides well with the results of our theoretical analysis. Besides, an effect of the coupling-induced long wavelength shift of the exciton emission spectrum is detected and modeled. These results can be of interest for quantum information applications of single emitters on the basis of perovskite nanocrystals with high photon emission rates.

9.
Small ; 15(43): e1902920, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31496053

RESUMEN

Plasmonics has emerged as an attractive field driving the development of optical systems in order to control and exploit light-matter interactions. The increasing interest around plasmonic systems is pushing the research of alternative plasmonic materials, spreading the operability range from IR to UV. Within this context, gallium appears as an ideal candidate, potentially active within a broad spectral range (UV-VIS-IR), whose optical properties are scarcely reported. Importantly, the smart design of active plasmonic materials requires their characterization at high spatial and spectral resolution to access the optical fingerprint of individual nanostructures, attainable by transmission electron microscopy techniques (i.e., by means of electron energy-loss spectroscopy, EELS). Therefore, the optical response of individual Ga nanoparticles (NPs) by means of EELS measurements is analyzed, in order to spread the understanding of the plasmonic response of Ga NPs. The results show that single Ga NPs may support several plasmon modes, whose nature is extensively discussed.

10.
Nano Lett ; 19(6): 3396-3408, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31039314

RESUMEN

The lack of mirror symmetry in binary semiconductor compounds turns them into polar materials, where two opposite orientations of the same crystallographic direction are possible. Interestingly, their physical properties (e.g., electronic or photonic) and morphological features (e.g., shape, growth direction, and so forth) also strongly depend on the polarity. It has been observed that nanoscale materials tend to grow with a specific polarity, which can eventually be reversed for very specific growth conditions. In addition, polar-directed growth affects the defect density and topology and might induce eventually the formation of undesirable polarity inversion domains in the nanostructure, which in turn will affect the photonic and electronic final device performance. Here, we present a review on the polarity-driven growth mechanism at the nanoscale, combining our latest investigation with an overview of the available literature highlighting suitable future possibilities of polarity engineering of semiconductor nanostructures. The present study has been extended over a wide range of semiconductor compounds, covering the most commonly synthesized III-V (GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb) and II-VI (ZnO, ZnTe, CdS, CdSe, CdTe) nanowires and other free-standing nanostructures (tripods, tetrapods, belts, and membranes). This systematic study allowed us to explore the parameters that may induce polarity-dependent and polarity-driven growth mechanisms, as well as the polarity-related consequences on the physical properties of the nanostructures.

11.
ACS Appl Bio Mater ; 2(7): 3084-3094, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35030800

RESUMEN

In the past decade, profuse research efforts explored the uses of iron oxide particles in nanomedicine. To a great extent, the efficiency and fate of those magnetic nanoparticles depend on how their surfaces interface with the proteins in a physiological environment. It is well reported how an ungoverned protein corona can be detrimental to cellular uptake and targeting efficiency and how it can modify the nanoparticles biodistribution. Novel strategies are emerging to achieve enhanced and more reproducible performances of engineered nanoparticles with a custom-built protein corona. Here we report on a generalized protocol to preform a monolayer of human serum albumin (HSA) on superparamagnetic iron oxide nanoparticles (SPIONs) of different sizes. The resulting molecular structures are described by molecular dynamics simulations of the hybrid nanoconjugates. The simulations outcomes regarding the number of proteins in the corona and their monolayer arrangement on the particle surface are in agreement with the results obtained from dynamic light scattering and electronic microscopy analysis. Using tryptophan fluorescence quenching, we revealed the existence of a strong interaction between the SPIONs and the HSA which endorses the robustness of the protein-nanoparticle conjugates in this system. Moreover, we evaluated the effect of the HSA corona on the SPIONs efficiency as magnetic resonance imaging (MRI) contrast agents in water, human serum, and saline media. The protein corona did not affect the efficiency of the SPIONs as T2 contrast agents but reduce their T1 efficiency. In addition, we observed a greater stability for HSA-SPIONs nanoconjugates in saline and in acid media, preventing nanoparticle dissolution in extreme gastric conditions.

12.
Langmuir ; 34(36): 10634-10643, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30096238

RESUMEN

Colloidal Pd2Sn and Au-Pd2Sn nanorods (NRs) with tuned size were produced by the reduction of Pd and Sn salts in the presence of size- and shape-controlling agents and the posterior growth of Au tips through a galvanic replacement reaction. Pd2Sn and Au-Pd2Sn NRs exhibited high catalytic activity toward quasi-homogeneous hydrogenation of alkenes (styrene and 1-octene) and alkynes (phenylacetylene and 1-octyne) in dichloromethane. Au-Pd2Sn NRs showed higher activity than Pd2Sn for 1-octene, 1-octyne, and phenylacetylene. In Au-Pd2Sn heterostructures, X-ray photoelectron spectroscopy evidenced an electron donation from the Pd2Sn NR to the Au tips. Such heterostructures showed distinct catalytic behavior in the hydrogenation of compounds containing a triple bond such as tolan. This can be explained by the aurophilicity of triple bonds. To further study this effect, Pd2Sn and Au-Pd2Sn NRs were also tested in the Sonogashira coupling reaction between iodobenzene and phenylacetylene in N, N-dimethylformamide. At low concentration, this reaction provided the expected product, tolan. However, at high concentration, more reduced products such as stilbene and 1,2-diphenylethane were also obtained, even without the addition of H2. A mechanism for this unexpected reduction is proposed.

13.
Nano Lett ; 16(12): 7814-7821, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960489

RESUMEN

Uniform silicon nanocrystals were synthesized with cuboctahedral shape and passivated with 1-dodecene capping ligands. Transmission electron microscopy, electron diffraction, and grazing incidence wide-angle and small-angle X-ray scattering show that these soft cuboctahedra assemble into face-centered cubic superlattices with orientational order. The preferred nanocrystal orientation was found to depend on the orientation of the superlattices on the substrate, indicating that the interactions with the substrate and assembly kinetics can influence the orientation of faceted nanocrystals in superlattices.

14.
ACS Appl Mater Interfaces ; 8(43): 29461-29469, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27730808

RESUMEN

The design and engineering of earth-abundant catalysts that are both cost-effective and highly active for water splitting are crucial challenges in a number of energy conversion and storage technologies. In this direction, herein we report the synthesis of Fe3O4@NiFexOy core-shell nanoheterostructures and the characterization of their electrocatalytic performance toward the oxygen evolution reaction (OER). Such nanoparticles (NPs) were produced by a two-step synthesis procedure involving the colloidal synthesis of Fe3O4 nanocubes with a defective shell and the posterior diffusion of nickel cations within this defective shell. Fe3O4@NiFexOy NPs were subsequently spin-coated over ITO-covered glass and their electrocatalytic activity toward water oxidation in carbonate electrolyte was characterized. Fe3O4@NiFexOy catalysts reached current densities above 1 mA/cm2 with a 410 mV overpotential and Tafel slopes of 48 mV/dec, which is among the best electrocatalytic performances reported in carbonate electrolyte.

15.
ACS Appl Mater Interfaces ; 8(27): 17435-44, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27323284

RESUMEN

Mn3O4@CoMn2O4 nanoparticles (NPs) were produced at low temperature and ambient atmosphere using a one-pot two-step synthesis protocol involving the cation exchange of Mn by Co in preformed Mn3O4 NPs. Selecting the proper cobalt precursor, the nucleation of CoxOy crystallites at the Mn3O4@CoMn2O4 surface could be simultaneously promoted to form Mn3O4@CoMn2O4-CoxOy NPs. Such heterostructured NPs were investigated for oxygen reduction and evolution reactions (ORR, OER) in alkaline solution. Mn3O4@CoMn2O4-CoxOy NPs with [Co]/[Mn] = 1 showed low overpotentials of 0.31 V at -3 mA·cm(-2) and a small Tafel slope of 52 mV·dec(-1) for ORR, and overpotentials of 0.31 V at 10 mA·cm(-2) and a Tafel slope of 81 mV·dec(-1) for OER, thus outperforming commercial Pt-, IrO2-based and previously reported transition metal oxides. This cation-exchange-based synthesis protocol opens up a new approach to design novel heterostructured NPs as efficient nonprecious metal bifunctional oxygen catalysts.

16.
Nano Lett ; 16(11): 6717-6723, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27347747

RESUMEN

Vapor-liquid-solid nanowire growth below the bulk metal-semiconductor eutectic temperature is known for several systems; however, the fundamental processes that govern this behavior are poorly understood. Here, we show that hydrogen atoms adsorbed on the Ge nanowire sidewall enable AuGe catalyst supercooling and control Au transport. Our approach combines in situ infrared spectroscopy to directly and quantitatively determine hydrogen atom coverage with a "regrowth" step that allows catalyst phase to be determined with ex situ electron microscopy. Maintenance of a supercooled catalyst with only hydrogen radical delivery confirms the centrality of sidewall chemistry. This work underscores the importance of the nanowire sidewall and its chemistry on catalyst state, identifies new methods to regulate catalyst composition, and provides synthetic strategies for subeutectic growth in other nanowire systems.

17.
ACS Appl Mater Interfaces ; 8(14): 9462-71, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27007184

RESUMEN

The synthesis of aluminum phosphates-based composites has been widely studied during the past decade because of the promising industrial application of these materials. Here we show a simple one-pot heterogeneous precipitation approach to fabricate a sepiolite-phosphate (SepP) composite with adequate control of the size and dispersion of the phosphate nanoparticles. This coupling between aluminum phosphate and sepiolite nanofibers results in the development of a novel three-dimensional rigid supported phosphate structure, which is generated during the thermal treatment. According to our results, this phenomenon can be explained by a migration-coalescence mechanism of phosphate nanoparticles over the sepiolite support, assisted by a liquid phase. It is worth pointing out that this stimulant behavior observed here could have potential technological applications such as halogen-free flame retardant materials.

18.
Nano Lett ; 16(2): 825-33, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26733426

RESUMEN

Ultra narrow bandgap III-V semiconductor nanomaterials provide a unique platform for realizing advanced nanoelectronics, thermoelectrics, infrared photodetection, and quantum transport physics. In this work we employ molecular beam epitaxy to synthesize novel nanosheet-like InSb nanostructures exhibiting superior electronic performance. Through careful morphological and crystallographic characterization we show how this unique geometry is the result of a single twinning event in an otherwise pure zinc blende structure. Four-terminal electrical measurements performed in both the Hall and van der Pauw configurations reveal a room temperature electron mobility greater than 12,000 cm(2)·V(-1)·s(-1). Quantized conductance in a quantum point contact processed with a split-gate configuration is also demonstrated. We thus introduce InSb "nanosails" as a versatile and convenient platform for realizing new device and physics experiments with a strong interplay between electronic and spin degrees of freedom.

19.
Nano Lett ; 15(5): 2869-74, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25894762

RESUMEN

GaAs nanowire arrays on silicon offer great perspectives in the optoelectronics and solar cell industry. To fulfill this potential, gold-free growth in predetermined positions should be achieved. Ga-assisted growth of GaAs nanowires in the form of array has been shown to be challenging and difficult to reproduce. In this work, we provide some of the key elements for obtaining a high yield of GaAs nanowires on patterned Si in a reproducible way: contact angle and pinning of the Ga droplet inside the apertures achieved by the modification of the surface properties of the nanoscale areas exposed to growth. As an example, an amorphous silicon layer between the crystalline substrate and the oxide mask results in a contact angle around 90°, leading to a high yield of vertical nanowires. Another example for tuning the contact angle is anticipated, native oxide with controlled thickness. This work opens new perspectives for the rational and reproducible growth of GaAs nanowire arrays on silicon.

20.
Langmuir ; 31(8): 2430-7, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25668493

RESUMEN

The effect of silicon nanowire (Si NW) diameter on the functionalization efficiency as given by covalent Si-C bond formation is studied for two distinct examples of 25 ± 5 and 50 ± 5 nm diameters (Si NW25 and Si NW50, respectively). A two-step chlorination/alkylation process is used to connect alkyl chains of various lengths (C1-C18) to thinner and thicker Si NWs. The shorter the alkyl chain lengths, the larger the surface coverage of the two studied Si NWs. Increasing the alkyl chain length (C2-C9) changes the coverage on the NWs: while for Si NW25 90 ± 10% of all surface sites are covered with Si-C bonds, only 50 ± 10% of all surface sites are covered with Si-C bonds for the Si NW50 wires. Increasing the chain length further to C14-C18 decreases the alkyl coverage to 36 ± 6% in thin Si NW25 and to 20 ± 5% in thick Si NW50. These findings can be interpreted as being a result of increased steric hindrance of Si-C bond formation for longer chain lengths and higher surface energy for the thinner Si NWs. As a direct consequence of these findings, Si NW surfaces have different stabilities against oxidation: they are more stable at higher Si-C bond coverage, and the surface stability was found to be dependent on the Si-C binding energy itself. The Si-C binding energy differs according to (C1-9)-Si NW > (C14-18)-Si NW, i.e., the shorter the alkyl chain, the greater the Si-C binding energy. However, the oxidation resistance of the (C2-18)-Si NW25 is lower than for equivalent Si NW50 surfaces as explained and experimentally substantiated based on electronic (XPS and KP) and structure (TEM and HAADF) measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...