Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Trace Elem Res ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639883

RESUMEN

Adequate copper (Cu) status has been associated with improved glycemic control, partly because of its role in reducing oxidative stress through superoxide dismutase (SOD) activity. Thus, the aim was to investigate the relationship between plasma Cu concentration and markers associated with glycemic control in individuals with type 2 diabetes mellitus (T2DM). This observational and cross-sectional study was conducted in individuals with T2DM of both sexes, aged between 19 and 59 years. Plasma Cu levels were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). Fasting glucose and insulin concentrations, C-peptide levels, SOD activity, and glycated hemoglobin (%HbA1c) were measured. Homeostatic model assessments (HOMA%B, HOMA%S, and HOMA-IR) were also performed. Additionally, %body fat and waist circumference were measured, and body mass index was calculated. Participants were categorized based on their plasma Cu concentrations (< 70 µg/dL and ≥ 70 µg/dL). The associations between variables were analyzed using chi-squared or Fisher's test and binary logistic regression models. Statistical significance was set at P < 0.05. Of the 97 participants (74.2% women), 85.5% had Cu deficiency. Cu-deficient individuals showed elevated C-peptide concentrations and HOMA%B values compared to those with adequate Cu levels (2.8 ng/mL vs. 1.8 ng/mL, P = 0.011; and 71.4 vs. 31.0, P = 0.003), respectively. Cu deficiency was associated with insulin resistance (P = 0.044) and decreased likelihood of exceeding the target serum glucose level (OR = 0.147, P = 0.013). However, no significant association was found between SOD activity and plasma Cu concentration. Consequently, Cu deficiency was linked to improved glycemic control, although it was not associated with the other markers.

2.
Food Chem ; 157: 179-85, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24679768

RESUMEN

Fruits are a rich source of a variety of biologically active compounds that can have complementary and overlapping mechanisms of action, including detoxification, enzyme modulation and antioxidant effects. Although the effects of tropical fruits have been examined individually, the interactive antioxidant capacity of the bioactive compounds in these formulations has not been sufficiently explored. For this reason, this study investigated the effect of two tropical fruit juices (FA and FB) on lipid peroxidation and antioxidant enzymes in rats. Seven groups, with eight rats each, were fed a normal diet for 4 weeks, and were force-fed daily either water (control), 100, 200, or 400 mg of FA or FB per kg. The results showed that the liver superoxide dismutase and catalase activities (FA200), erythrocytes glutathione peroxidase (FB400) and thiobarbituric acid-reactive substances (FB100, FA400, FB200, FB400) were efficiently reduced by fruit juices when compared with control; whereas HDL-c increased (FB400).


Asunto(s)
Catalasa/química , Frutas/química , Glutatión Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Antioxidantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Masculino , Oxidación-Reducción , Estrés Oxidativo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...