Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Leg Med (Tokyo) ; 59: 102132, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35952617

RESUMEN

Species identification of unknown biological samples is crucial for forensic applications, especially in cases of explosion, disaster accidents, and body mutilation after murdering, as well as poaching, illegal trade in endangered animals, and meat food fraud. In this study, we identified 60 volatile organic compounds (VOCs) in fresh skeletal muscle tissues of seven different animal species (cattle, sheep, pigs, rabbits, rats, chickens and carp) and a human dead body by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS), and compared their differences by retention time, drift time and molecular weight. The results showed that these VOCs formed different gallery plot fingerprints in the skeletal muscle tissues of the human dead body and seven animal species. Principal component analysis (PCA) showed significantly different fingerprints between these species, and these fingerprints maintained good stability between the species and within the same species. Some VOCs have high species specificity, while VOCs of human fresh muscle tissues from different individual sources have little difference, demonstrating that all tested muscle tissue samples could be distinguished based on different VOCs. HS-GC-IMS has proved to be a rapid, high-throughput, highly sensitive and specific species identification method, which can be used for forensic species identification in criminal cases and disaster accidents, as well as detection in the field of food safety, such as meat fraud and adulteration.


Asunto(s)
Compuestos Orgánicos Volátiles , Animales , Porcinos , Bovinos , Humanos , Ovinos , Conejos , Ratas , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Pollos , Espectrometría de Movilidad Iónica/métodos , Músculos
2.
Biomedicines ; 9(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34944685

RESUMEN

Pyrvinium pamoate, a widely-used anthelmintic agent, reportedly exhibits significant anti-tumor effects in several cancers. However, the efficacy and mechanisms of pyrvinium against myeloid leukemia remain unclear. The growth inhibitory effects of pyrvinium were tested in human AML cell lines. Transcriptome analysis of Molm13 myeloid leukemia cells suggested that pyrvinium pamoate could trigger an unfolded protein response (UPR)-like pathway, including responses to extracellular stimulus [p-value = 2.78 × 10-6] and to endoplasmic reticulum stress [p-value = 8.67 × 10-7], as well as elicit metabolic reprogramming, including sulfur compound catabolic processes [p-value = 2.58 × 10-8], and responses to a redox state [p-value = 5.80 × 10-5]; on the other hand, it could elicit a pyrvinium blunted protein folding function, including protein folding [p-value = 2.10 × 10-8] and an ATP metabolic process [p-value = 3.95 × 10-4]. Subsequently, pyrvinium was verified to induce an integrated stress response (ISR), demonstrated by activation of the eIF2α-ATF4 pathway and inhibition of mTORC1 signaling, in a dose- and time-dependent manner. Additionally, pyrvinium could co-localize with mitochondria and then decrease the mitochondrial basal oxidative consumption rate, ultimately dysregulating the mitochondrial function. Similar effects were observed in cabozantinib-resistant Molm13-XR cell lines. Furthermore, pyrvinium treatment retarded Molm13 and Molm13-XR xenograft tumor growth. Thus, we concluded that pyrvinium exerts anti-tumor activity, at least, via the modulation of the mitochondrial function and by triggering ISR.

3.
Cell Cycle ; 15(13): 1742-54, 2016 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-27163719

RESUMEN

People have known that autophagy plays a very important role in many physiological and pathological events. But the role of autophagy on embryonic angiogenesis still remains obscure. In this study, we demonstrated that Atg7, Atg8 and Beclin1 were expressed in the plexus vessels of angiogenesis at chick yolk sac membrane and chorioallantoic membrane. Interfering in autophagy with autophagy inducer or inhibitor could restrict the angiogenesis in vivo, which might be driven by the disorder of angiogenesis-related gene expressions, and also lead to embryonic hemorrhage, which was due to imperfection cell junctions in endothelial cells including abnormal expressions of tight junction, adheren junction and desmosome genes. Using HUVECs, we revealed that cell viability and migration ability changed with the alteration of cell autophagy exposed to RAPA or 3-MA. Interestingly, tube formation assay showed that HUVECs ability of tube formation altered with the change of Atg5, Atg7 and Atg8 manipulated by the transfection of their corresponding siRNA or plasmids. Moreover, the lost cell polarity labeled by F-actin and the absenced ß-catenin in RAPA-treated and 3-MA-treated cell membrane implied intracellular cytoskeleton alteration was induced by the activation and depression of autophagy. Taken together, our current experimental data reveal that autophagy is really involved in regulating angiogenesis during embryo development.


Asunto(s)
Autofagia , Desarrollo Embrionario , Neovascularización Fisiológica , Adenina/análogos & derivados , Adenina/farmacología , Angiodisplasia/genética , Angiodisplasia/patología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Movimiento Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Endotelio Vascular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Neovascularización Fisiológica/genética , Sirolimus/farmacología
4.
Reprod Toxicol ; 62: 53-61, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27112526

RESUMEN

It is known that excess alcohol consumption during pregnancy can increase the risk of fetal alcohol spectrum disorder (FASD). However, the effect of ethanol exposure on bone morphogenesis in fetus is largely unknown. In this study, we demonstrated that ethanol treatment of gastrulating chick embryos could inhibit long bone (humerus, radius and ulna) development. Histological examination revealed that ethanol exposure reduced the width of the proliferation and hypertrophic zones. In addition, cell proliferation and alkaline phosphatase activities were repressed. We also investigated the effect on chondrogenesis and chondrogenesis was inhibited. Ethanol exposure also induced excess reactive oxygen species (ROS) production and altered the expression of osteogenesis-related genes. The inhibiting effect on flat bone (sclerotic ossicle) and the generation of cranial neural crest cells (progenitors of craniofacial bones) was also presented. In conclusion, ethanol exposure during the embryonic period retards bone development through excess ROS production and altered bone-associated gene expression.


Asunto(s)
Etanol/toxicidad , Osteogénesis/efectos de los fármacos , Fosfatasa Alcalina/metabolismo , Animales , Huesos/efectos de los fármacos , Huesos/embriología , Huesos/metabolismo , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Colágeno Tipo XI/genética , Desarrollo Embrionario/efectos de los fármacos , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Cresta Neural/citología , Cresta Neural/efectos de los fármacos , Osteogénesis/genética , Osteogénesis/fisiología , Especies Reactivas de Oxígeno/metabolismo
5.
J Appl Toxicol ; 36(5): 692-701, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26177723

RESUMEN

It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development.


Asunto(s)
Inhibidores de la Angiogénesis/toxicidad , Embrión no Mamífero/efectos de los fármacos , Etanol/toxicidad , Neovascularización Fisiológica/efectos de los fármacos , Amidinas/toxicidad , Animales , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/embriología , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Desarrollo Embrionario/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Receptores de Factores de Crecimiento Endotelial Vascular/genética , Receptores de Factores de Crecimiento Endotelial Vascular/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Saco Vitelino/efectos de los fármacos
6.
J Appl Toxicol ; 36(2): 285-95, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26179615

RESUMEN

It is now known that over-consumption of caffeine by pregnant mothers could have detrimental effects on normal fetal development. However, it remains obscure how caffeine's harmful effect impacts directly or indirectly on the developing embryo/fetus through damaging placenta development. In this study, we demonstrated the morphological similarities between the yolk sac and chorioallantoic membranes (CAM) of chick embryos and the villi of the mammalian placenta. Using the chick yolk sac and the CAM as a model, we found that 5-15 µmol per egg of caffeine exposure inhibited angiogenesis. Under the same condition, cell proliferation in extraembryonic mesoderm was reduced while apoptosis was enhanced. Semi-quantitative RT-PCR analysis revealed that caffeine treatment down-regulated VEGF, VEGFR2, PIGF, IGF2 and NRP1 expression, but up-regulated Ang1 and Ang2 expression. We performed in situ hybridization to show VE-cadherin expression and as to demonstrate the blood vessels in the CAM and yolk sac membranes. This distribution of the VE-cadherin(+) blood vessels was determined to be reduced after caffeine treatment. Furthermore, MDA activity was induced after caffeine exposure, but GSH-PX activity was inhibited after caffeine exposure; SOD activity was unchanged as compared with the control. In summary, our results suggest that caffeine exposure could negatively impact on angiogenesis in the chick yolk sac and CAM by targeting angiogenesis-related genes. Some of these genes are also involved in regulating excess ROS generation. The results implied that the negative impact of caffeine on fetal development was partly attributed to impaired placental angiogenesis.


Asunto(s)
Vasos Sanguíneos/efectos de los fármacos , Cafeína/toxicidad , Desarrollo Fetal/efectos de los fármacos , Mamíferos/crecimiento & desarrollo , Placenta/efectos de los fármacos , Reproducción/efectos de los fármacos , Saco Vitelino/efectos de los fármacos , Animales , Pollos , Femenino , Modelos Animales , Embarazo
7.
Placenta ; 36(10): 1087-94, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26282852

RESUMEN

INTRODUCTION: For ectopic tubal pregnancy to be viable, it requires a supporting vascular network and functioning trophoblast. Slit2/Robo1 signaling plays an important role in placental angiogenesis during normal pregnancy. Hence, we here investigated whether or not Slit2/Robo1 signaling also had an impact in ectopic tubal pregnancy. METHODS: The Slit2 and Robo1 expression pattern relevant to trophoblast invasive behavior and vascular remodeling was studied in human tubal placenta obtained from patients with ectopic pregnancy (5-8weeks gestation), The trophoblast development, vascular architecture and Robo1 expression pattern were observed in Slit2 overexpression (Slit2-Tg) and C57BL mice placenta (E13.5 and E15.5). RESULTS: Marked with CK-7 and Vimentin, the vessel profiles of fallopian tube were classified into four stages. In the presence of extravillous trophoblast (EVT), stellate-shaped and polygonal-shaped EVTs were observed, and the stellate-shaped EVT showed the higher Slit2 expression (P < 0.01) but lower Robo1 expression (P < 0.05) than polygonal-shaped cells. By contrast, a temporary Slit2 up-regulation in remodeling vessel and Slit2 down-regulation in remodeled vessel of polygonal-shape extravillous trophoblast cells occurred in tubal pregnancies. In Slit2-Tg mice E13.5 and E15.5 placenta, Slit2 overexpression promoted vascular remodeling by increasing in the diameter of the maternal blood sinusoids and fetal capillaries, but enhanced the thickness of trophoblast and vasculature at E15.5 Slit2-Tg mice. CONCLUSIONS: The varying Slit2 and Robo1 expression in EVTs was associated with trophoblast invasion and probably plays an important role in the events of blood vessel remodeling of the fallopian tube tissues.


Asunto(s)
Transición Epitelial-Mesenquimal , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Embarazo Tubario/metabolismo , Receptores Inmunológicos/metabolismo , Trofoblastos/fisiología , Animales , Cadherinas/metabolismo , Trompas Uterinas/patología , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Embarazo Tubario/patología , Remodelación Vascular , Vimentina/metabolismo , beta Catenina/metabolismo , Proteínas Roundabout
8.
Cell Cycle ; 14(20): 3306-17, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26317250

RESUMEN

Excess alcohol consumption during pregnancy has been acknowledged to increase the incidence of congenital disorders, especially the cardiovascular system. However, the mechanism involved in ethanol-induced cardiac malformation in prenatal fetus is still unknown. We demonstrated that ethanol exposure during gastrulation in the chick embryo increased the incidence of cardia bifida. Previously, we reported that autophagy was involved in heart tube formation. In this context, we demonstrated that ethanol exposure increased ATG7 and LC3 expression. mTOR was found to be inhibited by ethanol exposure. We activated autophagy using exogenous rapamycin (RAPA) and observed that it induced cardiac bifida and increased GATA5 expression. RAPA beads implantation experiments revealed that RAPA restricted ventricular myosin heavy chain (VMHC) expression. In vitro explant cultures of anterior primitive streak demonstrated that both ethanol and RAPA treatments could reduce cell differentiation and the spontaneous beating of cardiac precursor cells. In addition, the bead experiments showed that RAPA inhibited GATA5 expression during heart tube formation. Semiquantitative RT-PCR analysis indicated that BMP2 expression was increased while GATA4 expression was suppressed. In the embryos exposed to excess ethanol, BMP2, GATA4 and FGF8 expression was repressed. These genes are associated with cardiomyocyte differentiation, while heart tube fusion is associated with increased Wnt3a but reduced VEGF and Slit2 expression. Furthermore, the ethanol exposure also caused the production of excess ROS, which might damage the cardiac precursor cells of developing embryos. In sum, our results revealed that disrupting autophagy and excess ROS generation are responsible for inducing abnormal cardiogenesis in ethanol-treated chick embryos.


Asunto(s)
Autofagia/efectos de los fármacos , Etanol/toxicidad , Cardiopatías Congénitas/inducido químicamente , Corazón/efectos de los fármacos , Corazón/embriología , Organogénesis/efectos de los fármacos , Animales , Autofagia/fisiología , Embrión de Pollo , Femenino , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Organogénesis/fisiología , Embarazo , Especies Reactivas de Oxígeno/metabolismo
9.
Vet Microbiol ; 175(2-4): 332-40, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25529828

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) was first reported in China since late 1995 and several variants were further reported in subsequence years, causing huge economic losses to the Chinese swine industry. To date, three major lineages (lineage 3, 5.1 and 8.7) of Type 2 PRRSV were reported in China based on our global genotyping. The present study provides the epidemiology of the PRRSV in South China based on the isolates collected during 2009-2012, indicating three lineages (lineage 3, 5.1 and 8.7) of Type 2 PRRSV were still circulating in this area. Our phylogenetic reconstruction indicated that lineage 3 re-emerged in 2010 formed a huge cluster with closely related to the 2004 isolates from Hong Kong. Furthermore, the inter-lineage genomic recombination between MLV vaccine strain (lineage 5) and a recently re-emerged lineage 3 virus (QYYZ) has also been found in a farm practicing MLV vaccination. Our in vivo experiment comparing the pathogenicity and clinical presentations among currently isolated viruses indicated that pigs infected with recombinant lineage 3 virus (GM2) showed persistent higher fever compared to pigs infected by its wild counterpart (QYYZ). This study enhanced our understanding on potential importance of the recombination of PRRSV along with their evolution.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Vacunas Virales/inmunología , Animales , China , Genoma Viral , Genómica , Genotipo , Hong Kong , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos , Virulencia
10.
Cell Cycle ; 13(17): 2752-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486362

RESUMEN

Autophagy is important for cell renewing for its contribution to the degradation of bulk cytoplasm, long-lived proteins, and entire organelles and its role in embryonic development is largely unknown. In our study, we investigated the function of autophagy in gastrulation of the chick embryo using both in vivo and in vitro approaches, especially in the EMT process, and we found that autophagy gene Atg7 was expressed on the apical side of the ectoderm and endoderm. Over-expression of Atg7 could enhance the expression of Atg8 and the E-cadherin, the latter of which is a crucial marker of the EMT process. We also found that the disturbance of autophagy could retard the development of chick embryos in HH4 with shorter primitive steak than that in the control group, which is a newly formed structure during EMT process. So we assumed that autophagy could affect EMT process by adhesion molecule expression. Moreover, more molecules, such as slug, chordin, shh et., which were all involved in EMT process, were detected to address the mechanism of this phenomena. We established that the inhibition of autophagy could cause developmental delay by affecting EMT process in gastrulation of chick embryos.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Gastrulación , Adenina/análogos & derivados , Adenina/farmacología , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Cadherinas/metabolismo , Moléculas de Adhesión Celular/metabolismo , Embrión de Pollo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Gástrula/citología , Gástrula/efectos de los fármacos , Gástrula/metabolismo , Gastrulación/efectos de los fármacos , Gastrulación/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Células HCT116 , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Sirolimus/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA