RESUMEN
Coats plus syndrome is an autosomal recessive multisystemic and pleiotropic disorder affecting the eyes, brain, bone, and gastrointestinal tract, usually caused by compound heterozygous variants of the conserved telomere maintenance component 1 gene (CTC1), involved in telomere homeostasis and replication. So far, most reported patients are compound heterozygous for a truncating mutation and a missense variant. The phenotype is believed to result from telomere dysfunction, with accumulation of DNA damage, cellular senescence, and stem cell depletion. Here, we report a 23-year-old female with prenatal and postnatal growth retardation, microcephaly, osteopenia, recurrent fractures, intracranial calcification, leukodystrophy, parenchymal brain cysts, bicuspid aortic valve, and primary ovarian failure. She carries a previously reported maternally inherited pathogenic variant in exon 5 (c.724_727del, p.(Lys242Leufs*41)) and a novel, paternally inherited splice site variant (c.1617+5G>T; p.(Lys480Asnfs*17)) in intron 9. CTC1 transcript analysis showed that the latter resulted in skipping of exon 9. A trace of transcripts was normally spliced resulting in the presence of a low level of wild-type CTC1 transcripts. We speculate that ovarian failure is caused by telomere shortening or chromosome cohesion failure in oocytes and granulosa cells, with early decrease in follicular reserve. This is the first patient carrying 2 truncating CTC1 variants and the first presenting primary ovarian failure.
Asunto(s)
Calcinosis , Quistes del Sistema Nervioso Central , Leucoencefalopatías , Ataxia/genética , Ataxia/patología , Neoplasias Encefálicas , Calcinosis/genética , Quistes del Sistema Nervioso Central/genética , Quistes del Sistema Nervioso Central/patología , Femenino , Humanos , Leucoencefalopatías/genética , Leucoencefalopatías/patología , Espasticidad Muscular , Mutación , Enfermedades de la Retina , Convulsiones , Proteínas de Unión a Telómeros/genéticaRESUMEN
The majority of insulin-like growth factor (IGF)-I and IGF-II circulate in the serum as a complex with the insulin-like growth factor binding protein (IGFBP)-3 or IGFBP-5, and an acid-labile subunit (ALS). The function of ALS is to prolong the half-life of the IGF-I-IGFBP-3/IGFBP-5 binary complexes. Fourteen different mutations of the human IGFALS gene have been identified in 17 patients, suggesting that ALS deficiency may be prevalent in a subset of patients with extraordinarily low serum levels of IGF-I and IGFBP-3 that remain abnormally low upon growth hormone stimulation. Postnatal growth was clearly affected. Commonly, the height standard deviation score before puberty was between -2 and -3, and approximately 1.4 SD shorter than the midparental height SDS. Pubertal delay was found in 50% of the patients. Circulating IGF-II, IGFBP-1, -2 and -3 levels were reduced, with the greatest reduction observed for IGFBP-3. Insulin insensitivity was a common finding, and some patients presented low bone mineral density. Human ALS deficiency represents a unique condition in which the lack of ALS proteins results in the disruption of the entire IGF circulating system. Despite a profound circulating IGF-I deficiency, there is only a mild impact on postnatal growth. The preserved expression of locally produced IGF-I might be responsible for the preservation of linear growth near normal limits.