Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(25): e2300891, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37002556

RESUMEN

Efficient energy transport over long distances is essential for optoelectronic and light-harvesting devices. Although self-assembled nanofibers of organic molecules are shown to exhibit long exciton diffusion lengths, alignment of these nanofibers into films with large, organized domains with similar properties remains a challenge. Here, it is shown how the functionalization of C3 -symmetric carbonyl-bridged triarylamine trisamide (CBT) with oligodimethylsiloxane (oDMS) side chains of discrete length leads to fully covered surfaces with aligned domains up to 125 × 70 µm2 in which long-range exciton transport takes place. The nanoscale morphology within the domains consists of highly ordered nanofibers with discrete intercolumnar spacings within a soft amorphous oDMS matrix. The oDMS prevents bundling of the CBT fibers, reducing the number of defects within the CBT columns. As a result, the columns have a high degree of coherence, leading to exciton diffusion lengths of a few hundred nanometers with exciton diffusivities (≈0.05 cm2 s-1 ) that are comparable to those of a crystalline tetracene. These findings represent the next step toward fully covered surfaces of highly aligned nanofibers through functionalization with oDMS.

2.
Mater Horiz ; 9(1): 294-302, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34611679

RESUMEN

The assembly of donor-acceptor molecules via charge transfer (CT) interactions gives rise to highly ordered nanomaterials with appealing electronic properties. Here, we present the synthesis and bulk co-assembly of pyrene (Pyr) and naphthalenediimide (NDI) functionalized oligodimethylsiloxanes (oDMS) of discrete length. We tune the donor-acceptor interactions by connecting the pyrene and NDI to the same oligomer, forming a heterotelechelic block molecule (NDI-oDMSPyr), and to two separate oligomers, giving Pyr and NDI homotelechelic block molecules (Pyr-oDMS and NDI-oDMS). Liquid crystalline materials are obtained for binary mixtures of Pyr-oDMS and NDI-oDMS, while crystallization of the CT dimers occurred for the heterotelechelic NDI-oDMS-Pyr block molecule. The synergy between crystallization and phase-segregation coupled with the discrete length of the oDMS units allows for perfect order and sharp interfaces between the insulating siloxane and CT layers composed of crystalline CT dimers. We were able to tune the lamellar domain spacing and donor-acceptor CT interactions by applying pressures up to 6 GPa on the material, making the system promising for soft-material nanotechnologies. These results demonstrate the importance of the molecular design to tune the CT interactions and stability of a CT material.

3.
Adv Mater ; 32(48): e2004775, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33118197

RESUMEN

Materials based on the laminar ordering of self-assembled molecules have a unique potential for applications requiring efficient energy migration through densely packed chromophores. Here, employing molecular assemblies of coil-rod-coil block molecules for triplet-triplet annihilation upconversion (TTA-UC) based on triplet energy migration with linearly polarized emission is reported. By covalently attaching discrete-length oligodimethylsiloxane (oDMS) to 9,10-diphenylanthracene (DPA), highly ordered 2D crystalline DPA sheets separated by oDMS layers are obtained. Transparent films of this material doped with small amounts of triplet sensitizer PtII octaethylporphyrin show air-stable TTA-UC under non-coherent excitation. Upon annealing, an increase in TTA-UC up to two orders of magnitude is observed originating from both an improved molecular ordering of DPA and an increased dispersion of the sensitizer. The molecular alignment in millimeter-sized domains leads to upconverted linearly polarized emission without alignment layers. By using a novel technique, upconversion imaging microscopy, the TTA-UC intensity is spatially resolved on a micrometer scale to visually demonstrate the importance of molecular dispersion of sensitizer molecules for efficient TTA-UC. The reported results are promising for anti-counterfeiting and 3D night-vision applications, but also exemplify the potential of discrete oligodimethylsiloxane functionalized chromophores for highly aligned and densely packed molecular materials.

4.
Chemphyschem ; 21(10): 1060-1069, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32301564

RESUMEN

We present a novel approach to study transient protein-protein complexes with standard, 9 GHz, and high-field, 95 GHz, electron paramagnetic resonance (EPR) and paramagnetic NMR at ambient temperatures and in solution. We apply it to the complex of yeast mitochondrial iso-1-cytochrome c (Cc) with cytochrome c peroxidase (CcP) with the spin label [1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate] attached at position 81 of Cc (SL-Cc). A dissociation constant KD of 20±4×10-6  M (EPR and NMR) and an equal amount of stereo-specific and encounter complex (NMR) are found. The EPR spectrum of the fully bound complex reveals that the encounter complex has a significant population (60 %) that shares important features, such as the Cc-interaction surface, with the stereo-specific complex.


Asunto(s)
Citocromo-c Peroxidasa/química , Citocromos c/química , Resonancia Magnética Nuclear Biomolecular , Algoritmos , Citocromo-c Peroxidasa/metabolismo , Citocromos c/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Unión Proteica
5.
PLoS One ; 13(1): e0191197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29351320

RESUMEN

The interaction of the complementary K (Ac-(KIAALKE)3-GW-NH2) and E (Ac-(EIAALEK)3-GY-NH2) peptides, components of the zipper of an artificial membrane fusion system (Robson Marsden H. et al. Angew Chemie Int Ed. 2009) is investigated by electron paramagnetic resonance (EPR). By frozen solution continuous-wave EPR and double electron-electron resonance (DEER), the distance between spin labels attached to the K- and to the E-peptide is measured. Three constructs of spin-labelled K- and E-peptides are used in five combinations for low temperature investigations. The K/E heterodimers are found to be parallel, in agreement with previous studies. Also, K homodimers in parallel orientation were observed, a finding that was not reported before. Comparison to room-temperature, solution EPR shows that the latter method is less specific to detect this peptide-peptide interaction. Combining frozen solution cw-EPR for short distances (1.8 nm to 2.0 nm) and DEER for longer distances thus proves versatile to detect the zipper interaction in membrane fusion. As the methodology can be applied to membrane samples, the approach presented suggests itself for in-situ studies of the complete membrane fusion process, opening up new avenues for the study of membrane fusion.


Asunto(s)
Proteínas de la Fusión de la Membrana/química , Secuencia de Aminoácidos , Simulación por Computador , Espectroscopía de Resonancia por Spin del Electrón , Fusión de Membrana/fisiología , Proteínas de la Fusión de la Membrana/fisiología , Modelos Moleculares , Oligopéptidos/química , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Marcadores de Spin , Temperatura
6.
J Am Chem Soc ; 139(42): 14869-14872, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28994585

RESUMEN

Crystallinity is seldomly utilized as part of the microphase segregation process in ultralow-molecular-weight block copolymers. Here, we show the preparation of two types of discrete, semicrystalline block co-oligomers, comprising an amorphous oligodimethylsiloxane block and a crystalline oligo-l-lactic acid or oligomethylene block. The self-assembly of these discrete materials results in lamellar structures with unforeseen uniformity in the domain spacing. A systematic introduction of dispersity reveals the extreme sensitivity of the microphase segregation process toward chain length dispersity in the crystalline block.

7.
Angew Chem Int Ed Engl ; 56(46): 14483-14487, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28980360

RESUMEN

The scope and accessibility of sequence-controlled multiblock copolymers is demonstrated by direct "in situ" polymerization of hydrophobic, hydrophilic and fluorinated monomers. Key to the success of this strategy is the ability to synthesize ABCDE, EDCBA and EDCBABCDE sequences with high monomer conversions (>98 %) through iterative monomer additions, yielding excellent block purity and low overall molar mass dispersities (Ð<1.16). Small-angle X-ray scattering showed that certain sequences can form well-ordered mesostructures. This synthetic approach constitutes a simple and versatile platform for expanding the availability of tailored polymeric materials from readily available monomers.

8.
J Phys Chem B ; 121(17): 4379-4387, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28422504

RESUMEN

We address the interpretation, via an integrated computational approach, of the experimental continuous-wave electron paramagnetic resonance (cw-EPR) spectra of a complete set of conformationally highly restricted, stable 310-helical peptides from hexa- to nonamers, each bis-labeled with nitroxide radical-containing TOAC (4-amino-1-oxyl-2,2,6,6-tetramethylpiperidine-4-carboxylic acid) residues. The usefulness of TOAC for this type of analysis has been shown already to be due to its cyclic piperidine side chain, which is rigidly connected to the peptide backbone α-carbon. The TOAC α-amino acids are separated by two, three, four, and five intervening residues. This set of compounds has allowed us to modulate both the radical···radical distance and the relative orientation parameters. To further validate our conclusion, a comparative analysis has been carried out on three singly TOAC-labeled peptides of similar main-chain length.


Asunto(s)
Óxidos N-Cíclicos/química , Óxidos de Nitrógeno/química , Péptidos/química , Teoría Cuántica , Espectroscopía de Resonancia por Spin del Electrón , Marcadores de Spin
9.
J Phys Chem B ; 119(43): 13507-14, 2015 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-26101942

RESUMEN

Protein folding is one of the important challenges in biochemistry. Understanding the folding process requires mapping of protein structure as it folds. Here we test the potential of distance determination between paramagnetic spin-labels by a pulsed electron paramagnetic resonance method. We use double electron-electron spin resonance (DEER) to study the denaturant-dependent equilibrium folding of flavodoxin. This flavoprotein is spin-labeled with MTSL ((1-oxy-,2,2,5,5-tetramethyl-d-pyrroline-3-methyl)-methanethiosulfonate) at positions 69 and 131. We find that nativelike spin-label separation dominates the distance distributions up to 0.8 M guanidine hydrochloride. At 2.3 M denaturant, the distance distributions show an additional component, which we attribute to a folding intermediate. Upon further increase of denaturant concentration, the protein expands and evidence for a larger number of conformations than in the native state is found. We thus demonstrate that DEER is a versatile technique to expand the arsenal of methods for investigating how proteins fold.


Asunto(s)
Flavodoxina/química , Pliegue de Proteína , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares
10.
Biopolymers ; 102(3): 244-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24488683

RESUMEN

For 3D-structure determination in biophysical systems EPR is rapidly gaining ground. Proteins labeled specifically with two nitroxide spin labels can be prepared, and several EPR methods are available for distance determination, which makes it possible to determine distance constraints. However, such methods require frozen solutions, potentially causing non-physiological states of the sample. Here, we target spin- spin interaction in liquid solution at room temperature using rigid model compounds. A series of 310 -helical peptides, based on α-aminoisobutyric acid (Aib), is synthesized with pairs of spin labels separated by three, four, and five amino acids. To avoid flexibility, the noncoded nitroxyl-containing α-amino acid TOAC that is rigidly connected with the peptide backbone, is used. The EPR spectra of the peptides show a decreasing amount of coupling between the two spin labels within this series. We suggest through-bond interaction as the dominating mechanism for exchange interaction (J) and find a stronger J-coupling than in the corresponding Ala-based TOAC-peptides investigated previously (Hanson, et al., J Am Chem Soc 1996, 118, 7618-7625). We speculate that stronger coupling in Aib- vs Ala- peptides is due to intrinsically stronger through-bond interaction in the Aib-based peptides.


Asunto(s)
Óxidos N-Cíclicos/química , Espectroscopía de Resonancia por Spin del Electrón , Modelos Moleculares , Péptidos/química , Marcadores de Spin , Simulación por Computador , Estructura Secundaria de Proteína
11.
Photosynth Res ; 104(2-3): 275-82, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20094793

RESUMEN

Cyanobacteria are widely used as model organism of oxygenic photosynthesis due to being the simplest photosynthetic organisms containing both photosystem I and II (PSI and PSII). Photochemically induced dynamic nuclear polarization (photo-CIDNP) (13)C magic-angle spinning (MAS) NMR is a powerful tool in understanding the photosynthesis machinery down to atomic level. Combined with selective isotope enrichment this technique has now opened the door to study primary charge separation in whole living cells. Here, we present the first photo-CIDNP observed in whole cells of the cyanobacterium Synechocystis.


Asunto(s)
Luz , Procesos Fotoquímicos/efectos de la radiación , Synechocystis/citología , Synechocystis/efectos de la radiación , Ácido Aminolevulínico/metabolismo , Isótopos de Carbono , Cromatografía Liquida , Marcaje Isotópico , Fototransducción/efectos de la radiación , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Synechocystis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA