Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Geophys Res Atmos ; 128(3): e2022JD037479, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-37034455

RESUMEN

Emissions of methane (CH4) in the Permian basin (USA) have been derived for 2019 and 2020 from satellite observations of the Tropospheric Monitoring Instrument (TROPOMI) using the divergence method, in combination with a data driven method to estimate the background column densities. The resulting CH4 emission data, which have been verified using model data with known emissions, have a spatial resolution of approximately 10 km. The CH4 emissions show moderate spatial correlation with the locations of oil and gas production and drilling activities in the Permian basin, as well as with emissions of nitrogen oxides (NOx). Analysis of the emission maps and time series indicates that a significant fraction of methane emissions in the Permian basin is from frequent widespread emissions sources, rather than from a few infrequent very large unplanned releases, which is important considering possible CH4 emission mitigation strategies. In addition to providing spatially resolved emissions, the divergence method also provides the total emissions of the Permian basin and its main sub-basins. The total CH4 emission of the Permian is estimated as 3.0 ± 0.7 Tg yr-1 for 2019, which agrees with other independent estimates based on TROPOMI data. For the Delaware sub-basin, it is estimated as 1.4 ± 0.3 Tg yr-1 for 2019, and for the Midland sub-basin 1.2 ± 0.3 Tg yr-1. In 2020 the emissions are 9% lower compared to 2019 in the entire Permian basin, and respectively 19% and 27% for the Delaware and Midland sub-basins.

2.
Environ Pollut ; 157(6): 1873-8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19231050

RESUMEN

We assessed satellite derived tropospheric NO(2) distribution on a global scale and identified the major NO(2) hotspot regions. Combined GOME and SCIAMACHY measurements for the period 1996-2006 have been used to compute the trends over these regions. Our analysis shows that tropospheric NO(2) column amounts have increased over the newly and rapidly developing regions like China (11+/-2.6%/year), south Asia (1.76+/-1.1%/year), Middle East (2.3+/-1%/year) and South Africa (2.4+/-2.2%/year). Tropospheric NO(2) column amounts show some decrease over the eastern US (-2+/-1.5%/year) and Europe (0.9+/-2.1%/year). We found that although tropospheric NO(2) column amounts decreased over the major developed regions in the past decade, the present tropospheric NO(2) column amounts over these regions are still significantly higher than those observed over newly and rapidly developing regions (except China). Tropospheric NO(2) column amounts show some decrease over South America and Central Africa, which are major biomass burning regions in the Southern Hemisphere.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Aire/análisis , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , Comunicaciones por Satélite , Países Desarrollados , Países en Desarrollo , Monitoreo del Ambiente/instrumentación , Modelos Estadísticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA