Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IMA Fungus ; 15(1): 12, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831329

RESUMEN

The pace at which Next Generation Sequence data is being produced continues to accelerate as technology improves. As a result, such data are increasingly becoming accessible to biologists outside of the field of bioinformatics. In contrast, access to training in the methods of genome assembly and annotation are not growing at a similar rate. In this issue, we report on a Genome Assembly Workshop for Mycologists that was held at the Forestry and Agricultural Biotechnology Institute (FABI) at the University of Pretoria, South Africa and make available the 12 draft genome sequences emanating from the event. With the aim of making the process of genome assembly and annotation more accessible to biologists, we provide a step-by-step guide to both genome assembly and annotation, intended to encourage and empower mycologists to use genome data in their research.

2.
J Fungi (Basel) ; 9(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37367587

RESUMEN

Lecanosticta acicola is one of the most damaging species affecting Pinus radiata plantations in Spain. Favourable climatic conditions and unknown endogenous factors of the pathogen and host led to a situation of high incidence and severity of the disease in these ecosystems. With the main aim of understanding the factors intrinsic to this pathogenic species, a study of the population structure in new established plantations with respect to older plantations was implemented. The genetic diversity, population structure and the ability of the pathogen to spread was determined in Northern Spain (Basque Country), where two thirds of the total Pinus radiata plantations of Spain are located. From a total of 153 Lecanosticta acicola isolates analysed, two lineages were present; the southern lineage, which was prevalent, and the northern lineage, which was scarce. A total of 22 multilocus genotypes were detected with a balanced composition of both mating types and evidence for sexual reproduction. In addition to the changing environmental conditions enhancing disease expression, the complexity and diversity of the pathogen will make it difficult to control and to maintain the wood productive system fundamentally based on this forest species.

3.
Front Genet ; 14: 1103331, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873952

RESUMEN

Dothistroma needle blight (DNB) is an important disease of Pinus species that can be caused by one of two distinct but closely related pathogens; Dothistroma septosporum and Dothistroma pini. Dothistroma septosporum has a wide geographic distribution and is relatively well-known. In contrast, D. pini is known only from the United States and Europe, and there is a distinct lack of knowledge regarding its population structure and genetic diversity. The recent development of 16 microsatellite markers for D. pini provided an opportunity to investigate the diversity, structure, and mode of reproduction for populations collected over a period of 12 years, on eight different hosts in Europe. In total, 345 isolates from Belgium, the Czech Republic, France, Hungary, Romania, Western Russia, Serbia, Slovakia, Slovenia, Spain, Switzerland, and Ukraine were screened using microsatellite and species-specific mating type markers. A total of 109 unique multilocus haplotypes were identified and structure analyses suggested that the populations are influenced by location rather than host species. Populations from France and Spain displayed the highest levels of genetic diversity followed by the population in Ukraine. Both mating types were detected in most countries, with the exception of Hungary, Russia and Slovenia. Evidence for sexual recombination was supported only in the population from Spain. The observed population structure and several shared haplotypes between non-bordering countries provides good evidence that the movement of D. pini in Europe has been strongly influenced by human activity in Europe.

4.
Mol Plant Pathol ; 20(10): 1327-1364, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31309681

RESUMEN

Lecanosticta acicola causes brown spot needle blight (BSNB) of Pinus species. The pathogen occurs mostly in the Northern Hemisphere but has also been reported in Central America and Colombia. BSNB can lead to stunted growth and tree mortality, and has resulted in severe damage to pine plantations in the past. There have been increasingly frequent new reports of this pathogen in Europe and in North America during the course of the past 10 years. This is despite the fact that quarantine practices and eradication protocols are in place to prevent its spread. TAXONOMY: Kingdom Fungi; Phylum Ascomycota; Subphylum Pezizomycotina; Class Dothideomycetes; Subclass Dothideomycetidae; Order Capniodales; Family Mycosphaerellaceae; Genus Lecanosticta. HOST RANGE AND DISTRIBUTION: Lecanosticta spp. occur on various Pinus species and are found in North America, Central America, South America (Colombia), Europe as well as Asia. DISEASE SYMPTOMS: Small yellow irregular spots appear on the infected pine needles that become brown over time. They can be surrounded by a yellow halo. These characteristic brown spots develop to form narrow brown bands that result in needle death from the tips down to the point of infection. Needles are prematurely shed, leaving bare branches with tufts of new needles at the branch tips. Infection is usually most severe in the lower parts of the trees and progresses upwards into the canopies. USEFUL WEBSITES: The EPPO global database providing information on L. acicola (https://gd.eppo.int/taxon/SCIRAC) Reference genome of L. acicola available on GenBank (https://www.ncbi.nlm.nih.gov/genome/?term=Lecanosticta+acicola) JGI Gold Genome database information sheet of L. acicola sequenced genome (https://gold.jgi.doe.gov/organism?xml:id=Go0047147).


Asunto(s)
Ascomicetos/patogenicidad , Pinus/microbiología , Bosques , Enfermedades de las Plantas/microbiología
5.
Mol Plant Pathol ; 20(6): 784-799, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30938073

RESUMEN

Dothistroma needle blight is one of the most devastating pine tree diseases worldwide. New and emerging epidemics have been frequent over the last 25 years, particularly in the Northern Hemisphere, where they are in part associated with changing weather patterns. One of the main Dothistroma needle blight pathogens, Dothistroma septosporum, has a global distribution but most molecular plant pathology research has been confined to Southern Hemisphere populations that have limited genetic diversity. Extensive genomic and transcriptomic data are available for a D. septosporum reference strain from New Zealand, where an introduced clonal population of the pathogen predominates. Due to the global importance of this pathogen, we determined whether the genome of this reference strain is representative of the species worldwide by sequencing the genomes of 18 strains sampled globally from different pine hosts. Genomic polymorphism shows substantial variation within the species, clustered into two distinct groups of strains with centres of diversity in Central and South America. A reciprocal chromosome translocation uniquely identifies the New Zealand strains. Globally, strains differ in their production of the virulence factor dothistromin, with extremely high production levels in strain ALP3 from Germany. Comparisons with the New Zealand reference revealed that several strains are aneuploids; for example, ALP3 has duplications of three chromosomes. Increased gene copy numbers therefore appear to contribute to increased production of dothistromin, emphasizing that studies of population structure are a necessary adjunct to functional analyses of genetic polymorphisms to identify the molecular basis of virulence in this important forest pathogen.


Asunto(s)
Ascomicetos/genética , Ascomicetos/patogenicidad , Duplicación Cromosómica/fisiología , Regulación Fúngica de la Expresión Génica/genética , Enfermedades de las Plantas/microbiología , Aneuploidia , Antraquinonas/metabolismo , Ascomicetos/metabolismo , Duplicación Cromosómica/genética , Elementos Transponibles de ADN/genética , Metagenómica , Enfermedades de las Plantas/genética
6.
IMA Fungus ; 10: 2, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32647611

RESUMEN

Lecanosticta acicola causes the disease known as brown spot needle blight (BSNB), on Pinus species. The pathogen is thought to have a Central American centre of origin. This was based on the morphological variation between isolates believed to represent L. acicola from native Pinus spp. Two species of Lecanosticta, L. brevispora and L. guatemalensis, have recently been described from Mexico and Guatemala respectively based on morphology and sequence-derived phylogenetic inference. However, the putative native pathogen, L. acicola, was not found in those areas. In this study, the species diversity of a large collection of Lecanosticta isolates from Central America was considered. Phylogenetic analyses of the BT1, ITS, MS204, RPB2 and TEF1 gene regions revealed six species of Lecanosticta, four of which represented undescribed taxa. These are described here as Lecanosticta jani sp. nov. from Guatemala and Nicaragua, L. pharomachri sp. nov. from Guatemala and Honduras, L. tecunumanii sp. nov. from Guatemala and L. variabilis sp. nov. from Guatemala, Honduras, and Mexico. New host and country records were also found for the previously described L. brevispora and L. guatemalensis. Lecanosticta acicola was not found in any of the samples from Central America, and we hypothesize that it could be a northern hemisphere taxon. The high species diversity of Lecanosticta found in Mesoamerica suggests that this is a centre of diversity for the genus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...