Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioorg Chem ; 151: 107676, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39068716

RESUMEN

Dual-specificity tyrosine phosphorylation-regulated kinase A (DYRK1A) is a potential drug target for diabetes. The DYRK1A inhibitor can promote ß cells proliferation, increase insulin secretion and reduce blood sugar in diabetes. In this paper, a series ß-carboline-cinnamic acid skeletal derivatives were designed, synthesized and evaluated to inhibit the activity of DYRK1A and promote pancreatic islet ß cell proliferation. Pharmacological activity showed that all of the compounds could effectively promote pancreatic islet ß cell proliferation at a concentration of 1 µM, and the cell viability of compound A1, A4 and B4 reached to 381.5 %, 380.2 % and 378.5 %, respectively. Compound A1, A4 and B4 could also inhibit the expression of DYRK1A better than positive drug harmine. Further mechanistic studies showed that compound A1, A4 and B4 could inhibit DYRK1A protein expression via promoting its degradation and thus enhancing the expression of proliferative proteins PCNA and Ki67. Molecular docking showed that ß-carboline scaffold of these three compounds was fully inserted into the ATP binding site and formed hydrophobic interactions with the active pocket. Besides, these three compounds were predicted to possess better drug-likeness properties using SwissADME. In conclusion, compounds A1, A4 and B4 were potent pancreatic ß cell proliferative agents as DYRK1A inhibitors and might serve as promising candidates for the treatment of diabetes.


Asunto(s)
Carbolinas , Proliferación Celular , Cinamatos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Quinasas DyrK , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Carbolinas/farmacología , Carbolinas/química , Carbolinas/síntesis química , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Cinamatos/farmacología , Cinamatos/química , Cinamatos/síntesis química , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Humanos , Animales , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Supervivencia Celular/efectos de los fármacos
2.
Pathol Res Pract ; 254: 155131, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38309018

RESUMEN

Diabetes has been a significant healthcare problem worldwide for a considerable period. The primary objective of diabetic treatment plans is to control the symptoms associated with the pathology. To effectively combat diabetes, it is crucial to comprehend the disease's etiology, essential factors, and the relevant processes involving ß-cells. The development of the pancreas, maturation, and maintenance of ß-cells, and their role in regular insulin function are all regulated by PDX1. Therefore, understanding the regulation of PDX1 and its interactions with signaling pathways involved in ß-cell differentiation and proliferation are crucial elements of alternative diabetes treatment strategies. The present review aims to explore the protective role of PDX1 in ß-cell proliferation through signaling pathways. The main keywords chosen for this review include "PDX1 for ß-cell mass," "ß-cell proliferation," "ß-cell restoration via PDX1," and "mechanism of PDX1 in ß-cells." A comprehensive literature search was conducted using various internet search engines, such as PubMed, Science Direct, and other publication databases. We summarize several approaches to generating ß-cells from alternative cell sources, employing PDX1 under various modified growth conditions and different transcriptional factors. Our analysis highlights the unique potential of PDX1 as a promising target in molecular and cell-based therapies for diabetes.


Asunto(s)
Diabetes Mellitus , Proteínas de Homeodominio , Células Secretoras de Insulina , Transactivadores , Humanos , Diabetes Mellitus/terapia , Diabetes Mellitus/metabolismo , Proteínas de Homeodominio/metabolismo , Células Secretoras de Insulina/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(45): e2204443119, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322741

RESUMEN

Recessive mutations in IER3IP1 (immediate early response 3 interacting protein 1) cause a syndrome of microcephaly, epilepsy, and permanent neonatal diabetes (MEDS). IER3IP1 encodes an endoplasmic reticulum (ER) membrane protein, which is crucial for brain development; however, the role of IER3IP1 in ß cells remains unknown. We have generated two mouse models with either constitutive or inducible IER3IP1 deletion in ß cells, named IER3IP1-ßKO and IER3IP1-ißKO, respectively. We found that IER3IP1-ßKO causes severe early-onset, insulin-deficient diabetes. Functional studies revealed a markedly dilated ß-cell ER along with increased proinsulin misfolding and elevated expression of the ER chaperones, including PDI, ERO1, BiP, and P58IPK. Islet transcriptome analysis confirmed by qRT-PCR revealed decreased expression of genes associated with ß-cell maturation, cell cycle, and antiapoptotic genes, accompanied by increased expression of antiproliferation genes. Indeed, multiple independent approaches further demonstrated that IER3IP1-ßKO impaired ß-cell maturation and proliferation, along with increased condensation of ß-cell nuclear chromatin. Inducible ß-cell IER3IP1 deletion in adult (8-wk-old) mice induced a similar diabetic phenotype, suggesting that IER3IP1 is also critical for function and survival even after ß-cell early development. Importantly, IER3IP1 was decreased in ß cells of patients with type 2 diabetes (T2D), suggesting an association of IER3IP1 deficiency with ß-cell dysfunction in the more-common form of diabetes. These data not only uncover a critical role of IER3IP1 in ß cells but also provide insight into molecular basis of diabetes caused by IER3IP1 mutations.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Ratones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Homeostasis/genética , Glucosa/metabolismo
4.
Cell Metab ; 34(11): 1779-1791.e9, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36240759

RESUMEN

Microbiome dysbiosis is a feature of diabetes, but how microbial products influence insulin production is poorly understood. We report the mechanism of BefA, a microbiome-derived protein that increases proliferation of insulin-producing ß cells during development in gnotobiotic zebrafish and mice. BefA disseminates systemically by multiple anatomic routes to act directly on pancreatic islets. We detail BefA's atomic structure, containing a lipid-binding SYLF domain, and demonstrate that it permeabilizes synthetic liposomes and bacterial membranes. A BefA mutant impaired in membrane disruption fails to expand ß cells, whereas the pore-forming host defense protein, Reg3, stimulates ß cell proliferation. Our work demonstrates that membrane permeabilization by microbiome-derived and host defense proteins is necessary and sufficient for ß cell expansion during pancreas development, potentially connecting microbiome composition with diabetes risk.


Asunto(s)
Diabetes Mellitus , Microbiota , Ratones , Animales , Pez Cebra , Páncreas/metabolismo , Insulina/metabolismo , Diabetes Mellitus/metabolismo , Proteínas/metabolismo
5.
Cell Rep ; 41(1): 111436, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198264

RESUMEN

Prevention or amelioration of declining ß cell mass is a potential strategy to cure diabetes. Here, we report the pathways utilized by ß cells to robustly replicate in response to acute insulin resistance induced by S961, a pharmacological insulin receptor antagonist. Interestingly, pathways that include CENP-A and the transcription factor E2F1 that are independent of insulin signaling and its substrates appeared to mediate S961-induced ß cell multiplication. Consistently, pharmacological inhibition of E2F1 blocks ß-cell proliferation in S961-injected mice. Serum from S961-treated mice recapitulates replication of ß cells in mouse and human islets in an E2F1-dependent manner. Co-culture of islets with adipocytes isolated from S961-treated mice enables ß cells to duplicate, while E2F1 inhibition limits their growth even in the presence of adipocytes. These data suggest insulin resistance-induced proliferative signals from adipocytes activate E2F1, a potential therapeutic target, to promote ß cell compensation.


Asunto(s)
Resistencia a la Insulina , Células Secretoras de Insulina , Animales , Proliferación Celular , Proteína A Centromérica/metabolismo , Factor de Transcripción E2F1/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones , Ratones Noqueados , Receptor de Insulina/metabolismo
6.
J Endocrinol ; 252(2): 107-123, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34788229

RESUMEN

Gestational diabetes mellitus (GDM) is a condition of diabetes with onset or first recognition in pregnancy. Its incidence is increasing, and GDM deleteriously affects both mother and the fetus during and even after pregnancy. Previous studies in mice have shown that during pregnancy, ß-cell proliferation increases in the middle and late stages of pregnancy and returns to normal levels after delivery. Hormones, such as prolactin, estradiol, and progesterone as well as protein kinases, play important roles in regulating gestation-mediated ß-cell proliferation; however, the regulatory relationship between them is uncertain. We previously found that protein kinase Pbk was crucial for basal proliferation of mouse islet cells. Herein we show that Pbk is upregulated during pregnancy in mice and Pbk kinase activity is required for enhanced ß- cell proliferation during pregnancy. Notably, knock-in (KI) of a kinase-inactivating Pbk mutation leads to impaired glucose tolerance and reduction of ß-cell proliferation and islet mass in mice during pregnancy. Prolactin upregulates the expression of Pbk, but the upregulation is diminished by knockdown of the prolactin receptor and by the inhibitors of JAK and STAT5, which mediate prolactin receptor signaling, in ß-cells. Treatment of ß-cells with prolactin increases STAT5 binding to the Pbk locus, as well as the recruitment of RNA polymerase II, resulting in increased Pbk transcription. These results demonstrate that Pbk is upregulated during pregnancy, at least partly by prolactin-induced and STAT5-mediated enhancement of gene transcription, and Pbk is essential for pregnancy-induced ß-cell proliferation, increase in islet mass, and maintenance of normal blood glucose during pregnancy in preclinical models. These findings provide new insights into the interplay between hormones and protein kinases that ultimately prevent the development of GDM.


Asunto(s)
Células Secretoras de Insulina/fisiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/fisiología , Embarazo/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Diabetes Gestacional/genética , Diabetes Gestacional/metabolismo , Femenino , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Intolerancia a la Glucosa/genética , Intolerancia a la Glucosa/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Prolactina/metabolismo , Prolactina/farmacología , Ratas
7.
Front Endocrinol (Lausanne) ; 12: 722250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421829

RESUMEN

In all forms of diabetes, ß cell mass or function is reduced and therefore the capacity of the pancreatic cells for regeneration or replenishment is a critical need. Diverse lines of research have shown the capacity of endocrine as well as acinar, ductal and centroacinar cells to generate new ß cells. Several experimental approaches using injury models, pharmacological or genetic interventions, isolation and in vitro expansion of putative progenitors followed by transplantations or a combination thereof have suggested several pathways for ß cell neogenesis or regeneration. The experimental results have also generated controversy related to the limitations and interpretation of the experimental approaches and ultimately their physiological relevance, particularly when considering differences between mouse, the primary animal model, and human. As a result, consensus is lacking regarding the relative importance of islet cell proliferation or progenitor differentiation and transdifferentiation of other pancreatic cell types in generating new ß cells. In this review we summarize and evaluate recent experimental approaches and findings related to islet regeneration and address their relevance and potential clinical application in the fight against diabetes.


Asunto(s)
Células Secretoras de Insulina/fisiología , Páncreas/fisiología , Regeneración/fisiología , Adulto , Animales , Recuento de Células , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Transdiferenciación Celular/fisiología , Humanos , Células Secretoras de Insulina/citología , Ratones , Tamaño de los Órganos , Páncreas/citología , Células Madre/fisiología
8.
Biol Pharm Bull ; 43(2): 289-295, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31813891

RESUMEN

According to the data, there are 387 million people with diabetes in the world, and the number of people with diabetes is expected to reach 600 million by 2035 (Nature Reviews Endocrinology, 14, 2018, Zheng et al.). At present, there are nearly 110 million diabetic patients in China, the incidence of which is increasing (Diabetologia, 61, 2018, Ma). Islet ß cell apoptosis and proliferation is an important basis for the occurrence and development of diabetes. It has been reported that enhancing the activity of incretin-cAMP signaling pathway can also promote islet ß cell proliferation, reduce ß cell apoptosis and promote insulin secretion (Diabetologia, 59, 2016, Iida et al.). Tibetan medicine Triphala (THL) is a traditional national medicine, it plays a good role in anti-fatigue, antioxidation, prevention and treatment of polycythemia at high altitude. Research have shown that it can reduce blood glucose in patients with diabetes and inhibit the activity of glucosidase in the intestines (The Journal of Alternative and Complementary Medicine, 23, 2017, Peterson et al.). After the diabetic Wistar rat model induced by Streptozocin (STZ) was successfully duplicated, the positive drug sitagliptin tablet and THL were given and the changes of body weight and blood glucose were measured. After 6 weeks, the expression of related factors in serum and pancreas was observed. Compared with the model group, in the treatment group, blood glucose decreased, body weight increased, incretin-cAMP signaling pathway related factors glucose-dependent insulin-promoting polypeptide (GIP), glucagon-like peptide-1 (GLP-1), GLP-1R, cAMP, P-protein kinase A (PKA), AKT were up-regulated, insulin secretion was increased, liporing protein interaction protein (TXNIP) expression was down-regulated. In addition, in the treatment group, the degree of islet atrophy was alleviated and the number of islet ß cells increased. This study shows that THL may enhance the activity of incretin-cAMP signal pathway and affect the proliferation and apoptosis of islet ß cells, so as to achieve the effect of anti-diabetes.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Incretinas/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Peso Corporal , Proteínas de Ciclo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/sangre , Péptido 1 Similar al Glucagón/metabolismo , Insulina/metabolismo , Masculino , Páncreas/metabolismo , Páncreas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar , Fosfato de Sitagliptina
9.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31557884

RESUMEN

Sleep apnea syndrome (SAS) is a very common disease involving intermittent hypoxia (IH), recurrent symptoms of deoxygenation during sleep, strong daytime sleepiness, and significant loss of quality of life. A number of epidemiological researches have shown that SAS is an important risk factor for insulin resistance and type 2 diabetes mellitus (DM), which is associated with SAS regardless of age, gender, or body habitus. IH, hallmark of SAS, plays an important role in the pathogenesis of SAS and experimental studies with animal and cellular models indicate that IH leads to attenuation of glucose-induced insulin secretion from pancreatic ß cells and to enhancement of insulin resistance in peripheral tissues and cells, such as liver (hepatocytes), adipose tissue (adipocytes), and skeletal muscles (myocytes). In this review, we focus on IH-induced dysfunction in glucose metabolism and its underlying molecular mechanisms in several cells and tissues related to glucose homeostasis.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Hipoxia/complicaciones , Hipoxia/metabolismo , Síndromes de la Apnea del Sueño/complicaciones , Tejido Adiposo/metabolismo , Animales , Diabetes Mellitus Tipo 2/epidemiología , Glucosa/metabolismo , Humanos , Hipoxia/epidemiología , Insulina/metabolismo , Resistencia a la Insulina , Células Secretoras de Insulina/metabolismo , Hígado/metabolismo , Músculo Esquelético/metabolismo , Tejido Nervioso/metabolismo , Especificidad de Órganos , Síndromes de la Apnea del Sueño/epidemiología
10.
Cell Metab ; 29(2): 457-474.e5, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30595478

RESUMEN

The nature of obesity-associated islet inflammation and its impact on ß cell abnormalities remains poorly defined. Here, we explore immune cell components of islet inflammation and define their roles in regulating ß cell function and proliferation. Islet inflammation in obese mice is dominated by macrophages. We identify two islet-resident macrophage populations, characterized by their anatomical distributions, distinct phenotypes, and functional properties. Obesity induces the local expansion of resident intra-islet macrophages, independent of recruitment from circulating monocytes. Functionally, intra-islet macrophages impair ß cell function in a cell-cell contact-dependent manner. Increased engulfment of ß cell insulin secretory granules by intra-islet macrophages in obese mice may contribute to restricting insulin secretion. In contrast, both intra- and peri-islet macrophage populations from obese mice promote ß cell proliferation in a PDGFR signaling-dependent manner. Together, these data define distinct roles and mechanisms for islet macrophages in the regulation of islet ß cells.


Asunto(s)
Inflamación/inmunología , Células Secretoras de Insulina/metabolismo , Macrófagos/inmunología , Obesidad/metabolismo , Receptores del Factor de Crecimiento Derivado de Plaquetas/inmunología , Animales , Línea Celular , Proliferación Celular , Secreción de Insulina , Células Secretoras de Insulina/patología , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA