Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(34): 45577-45588, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39136733

RESUMEN

High refractive index, low birefringence photopolymers were created via the radical-mediated, ring opening homopolymerization of 1,2-dithiolane functionalized monomers and were subsequently evaluated as holographic recording media. This investigation systematically characterized the reaction kinetics, thermodynamics, and volume shrinkage of the 1,2-dithiolane homopolymerization as well as the optical transparency, refractive index, birefringence, and holographic performance of multifunctional 1,2-dithiolane functionalized monomers and their resultant polymers. Real-time kinetic and thermodynamic analyses of a monofunctional 1,2-dithiolane monomer, lipoic acid methyl ester (LipOMe), indicated rapid monomer conversion, exceeding 90% in 60 s, with an overall enthalpy of reaction of 18 ± 1 kJ/mol. The ring-opening polymerization resulted in low shrinkage (10.6 ± 0.3 cm3/mol dithiolane) and a significant bulk refractive index increase (0.030 ± 0.003). The resulting photopolymers exhibited high optical transparency, minimal haze, and negligible birefringence, suggesting the potential of 1,2-homopolymers as optical materials. To further explore the specific capabilities for use as high-performance holographic recording applications, several multifunctional monomers were synthesized with the ethanedithiol lipoic acid monomer (EDT-Lip2) selected for experimentation. Holographic diffraction gratings written using this monomer achieved a peak-to-mean refractive index modulation of 0.008 with minimal haze and birefringence.

2.
Molecules ; 28(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37764424

RESUMEN

Thioredoxin reductase is an essential enzyme that plays a crucial role in maintaining cellular redox homeostasis by catalyzing the reduction of thioredoxin, which is involved in several vital cellular processes. The overexpression of TrxR is often associated with cancer development. A series of 1,2-dithiolane-4-carboxylic acid analogs were obtained to verify the selectivity of 1,2-dithiolane moiety toward TrxR. Asparagusic acid analogs and their bioisoters remain inactive toward TrxR, which proves the inability of the 1,2-dithiolane moiety to serve as a pharmacophore during the interaction with TrxR. It was found that the Michael acceptor functionality-containing analogs exhibit higher inhibitory effects against TrxR compared to other compounds of the series. The most potent representatives exhibited micromolar TrxR1 inhibition activity (IC50 varied from 5.3 to 186.0 µM) and were further examined with in vitro cell-based assays to assess the cytotoxic effects on various cancer cell lines and cell death mechanisms.

3.
Biosensors (Basel) ; 13(8)2023 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-37622897

RESUMEN

The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.


Asunto(s)
Colorantes Fluorescentes , Reductasa de Tiorredoxina-Disulfuro , Humanos , Animales , Bioensayo , Mamíferos
5.
ChemMedChem ; 18(17): e202300143, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366073

RESUMEN

The synthetic approaches towards unique asparagusic acid and its analogues as well as its chemical use, the breadth of its biological properties and their relevant applications have been explored. The significance of the 1,2-dithiolane ring tension in dithiol-mediated uptake and its use for the intracellular transport of molecular cargoes is discussed alongside some of the challenges that arise from the fast thiolate-disulfide interchange. The short overview with the indication of the available literature on natural 1,2-dithiolanes synthesis and biological activities is also included. The general review structure is based on the time-line perspective of the application of asparagusic acid moiety as well as its primitive derivatives (4-amino-1,2-dithiolane-4-carboxylic acid and 4-methyl-1,2-dithiolane-4-carboxilic acid) used in clinics/cosmetics, focusing on the recent research in this area and including international patents applications.


Asunto(s)
Ácidos Carboxílicos , Tiofenos , Tiofenos/química , Disulfuros/química
7.
Angew Chem Int Ed Engl ; 59(10): 3976-3981, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31825548

RESUMEN

Molybdenum disulfide nanosheets covalently modified with porphyrin were prepared and fully characterized. Neither the porphyrin absorption nor its fluorescence was notably affected by covalent linkage to MoS2 . The use of transient absorption spectroscopy showed that a complex ping-pong energy-transfer mechanism, namely from the porphyrin to MoS2 and back to the porphyrin, operated. This study reveals the potential of transition-metal dichalcogenides in photosensitization processes.

8.
Angew Chem Int Ed Engl ; 57(21): 6141-6145, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29582524

RESUMEN

Elevated reactive oxygen species and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. As a major regulator of the cellular redox homeostasis, the selenoprotein thioredoxin reductase (TrxR) is increasingly considered as a promising target for anticancer drug development. The current approach to inhibit TrxR predominantly relies on the modification of the selenocysteine residue in the C-terminal active site of the enzyme, in which it is hard to avoid the off-target effects. By conjugating the anticancer drug gemcitabine with a 1,2-dithiolane scaffold, an unprecedented prodrug strategy is disclosed that achieves a specific release of gemcitabine by TrxR in cells. As overexpression of TrxR is frequently found in different types of tumors, the TrxR-dependent prodrugs are promising for further development as cancer chemotherapeutic agents.


Asunto(s)
Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Profármacos/farmacología , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HeLa , Humanos , Estructura Molecular , Profármacos/química , Profármacos/metabolismo , Relación Estructura-Actividad , Reductasa de Tiorredoxina-Disulfuro/genética , Gemcitabina
11.
Phytochemistry ; 97: 5-10, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24099657

RESUMEN

Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.


Asunto(s)
Asparagus/química , Tiofenos/aislamiento & purificación , Humanos , Masculino , Estructura Molecular , Tiofenos/química , Tiofenos/farmacología , Orina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA