Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Mater Today Bio ; 27: 101114, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39211509

RESUMEN

The restoration of cartilage injuries remains a formidable challenge in orthopedics, chiefly attributed to the absence of vascularization and innervation in cartilage. Decellularized extracellular matrix (dECM) derived from cartilage, following antigenic removal through decellularization processes, has exhibited remarkable biocompatibility and bioactivity, rendering it a viable candidate for cartilage repair. Additionally, extracellular vesicles (EVs) generated from cartilage have demonstrated a synergistic effect when combined with dECM, potentially mitigating the inhibitory impact on protein synthesis by phosphorylating 4ebp, thereby promoting the synthesis of cartilage-related proteins such as collagen. In pursuit of this objective, we have innovated a novel bioink and repair scaffold characterized by exceptional biocompatibility, bioactivity, and biodegradability, establishing a tissue-specific microenvironment conducive to chondrogenesis. Within rat osteochondral defects, the biologically active scaffold successfully prompted the formation of transparent cartilage, featuring adequate mechanical strength, favorable elasticity, and dECM deposition indicative of cartilage. In summary, this study has effectively engineered a hydrogel bioink tailored for cartilage repair and devised a bioactive cartilage repair scaffold proficient in instigating cell differentiation and fostering cartilage repair.

2.
Neoplasia ; 55: 101020, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38991376

RESUMEN

The 78-kDa glucose regulated protein (GRP78) commonly upregulated in a wide variety of tumors is an important prognostic marker and a promising target for suppressing tumorigenesis and treatment resistance. While GRP78 is well established as a major endoplasmic reticulum (ER) chaperone with anti-apoptotic properties and a master regulator of the unfolded protein response, its new role as a regulator of oncoprotein expression is just emerging. MYC is dysregulated in about 70 % of human cancers and is the most commonly activated oncoprotein. However, despite recent advances, therapeutic targeting of MYC remains challenging. Here we identify GRP78 as a new target for suppression of MYC expression. Using multiple MYC-dependent cancer models including head and neck squamous cell carcinoma and their cisplatin-resistant clones, breast and pancreatic adenocarcinoma, our studies revealed that GRP78 knockdown by siRNA or inhibition of its activity by small molecule inhibitors (YUM70 or HA15) reduced c-MYC expression, leading to onset of apoptosis and loss of cell viability. This was observed in 2D cell culture, 3D spheroid and in xenograft models. Mechanistically, we determined that the suppression of c-MYC is at the post-transcriptional level and that YUM70 and HA15 treatment potently upregulated the eukaryotic translation inhibitor 4E-BP1, which targets eIF4E critical for c-MYC translation initiation. Furthermore, knock-down of 4E-BP1 via siRNA rescued YUM70-mediated c-MYC suppression. As YUM70 is also capable of suppressing N-MYC expression, this study offers a new approach to suppress MYC protein expression through knockdown or inhibition of GRP78.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Chaperón BiP del Retículo Endoplásmico , Regulación Neoplásica de la Expresión Génica , Proteínas de Choque Térmico , Proteínas Proto-Oncogénicas c-myc , Humanos , Chaperón BiP del Retículo Endoplásmico/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/antagonistas & inhibidores , Ratones , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Regulación hacia Arriba/efectos de los fármacos
3.
Int Immunopharmacol ; 139: 112690, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39053227

RESUMEN

The pathogenesis of SSc pulmonary fibrosis is complex and prognosis is poor. In order to find biomarkers to provide assistance in the diagnosis and treatment of systemic sclerosis (SSc), this study explored the role of SSc-related differentially expressed circRNAs in the fibrosis process. This study explored whether circular RNA (circRNA) mediated the mTOR signaling pathway by interacting with the eukaryotic translation initiation factor eIF4E-binding protein 1 (4E-BP1), participated in a competing endogenous RNA (ceRNA) network, and regulated the mechanism of pulmonary fibrosis in systemic sclerosis (SSc). The results showed that the expression of mmu_circ_0005373 was reduced, and mmu_circ_0005373 may regulate the mTOR signaling pathway by inhibiting the interacting with 4E-BP1 protein in the lung of SSc mice, and promote fibrosis in SSc. Hsa_circ_0136255, which is homologous to mmu_circ_0005373, is also reduced in SSc peripheral blood mononuclear cells, and predicted to interact with 4E-BP1 protein. Hsa_circ_0136255/hsa-miR-330-3p/TNFAIP3 ceRNA network had biological significance in SSc, and correlated with clinical data, including high-resolution CT, average expiratory flow at 25% vital capacity, neutrophil count, lymphocyte percentage, standard deviation of red blood cell distribution width, coefficient of variation of red blood cell distribution width, platelet distribution width, glutamic transaminase, γ-glutamyl transpeptidase, lymphocyte percentage, basophils percentage, red blood cell, plateletcrit, cholinesterase, and mean corpuscular hemoglobin concentration. Hsa_circ_0136255, hsa-miR-330-3p, and TNFAIP3 may be used as biomarkers for clinical diagnosis and treatment of SSc.


Asunto(s)
Fibrosis Pulmonar , ARN Circular , Esclerodermia Sistémica , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/patología , Humanos , Animales , ARN Circular/genética , Fibrosis Pulmonar/genética , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Masculino , Transducción de Señal , Femenino , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Pulmón/patología , MicroARNs/genética , Biomarcadores , Persona de Mediana Edad
4.
Eur J Pharmacol ; 978: 176787, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38944176

RESUMEN

Malignant renal rhabdoid tumor (MRTK) is an aggressive and rare malignancy primarily affecting infants and young children. The intricate interactions within the Tumor Microenvironment (TME) are crucial in shaping MRTK's progression. This study elucidates the significance of tumor-associated macrophages(TAMs) within this milieu and their interplay with eukaryotic translation initiation factor 4E-binding protein 1 (EIF4EBP1) in tumor cells, collectively contributing to MRTK's malignant advancement. Through comprehensive analysis of clinical samples and the TARGET database, EIF4EBP1 emerges as a central macrophage-associated gene with robust prognostic implications. Elevated EIF4EBP1 expression correlates with poor prognosis and heightened infiltration of TAMs. Functional validation demonstrates that EIF4EBP1 knockdown in G401 cells significantly attenuates self-proliferation, migration, and invasion. Moreover, EIF4EBP1 regulates macrophage recruitment and M2 polarization through the ERK/P38 MAPK-MIF axis. Notably, M2 macrophages reciprocally foster the malignant behavior of MRTK tumor cells. This study unveils the pivotal role of EIF4EBP1 in propelling MRTK's malignant progression, unraveling a complex regulatory network involving EIF4EBP1 and TAMs. These findings underscore EIF4EBP1 as a promising biomarker and highlight its therapeutic potential in MRTK management.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Macrófagos Asociados a Tumores , Humanos , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Línea Celular Tumoral , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Neoplasias Renales/patología , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Proliferación Celular/genética , Microambiente Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Pronóstico
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(3): 670-678, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38926952

RESUMEN

OBJECTIVE: To investigate the clinical significance, functional role and potential downstream mechanism of USP5 in acute myeloid leukemia (AML). METHODS: The expression of USP5 in AML and normal tissues and its correlation with patients' survival were analyzed based on TCGA database. USP5 was knocked down and overexpressed in Jurkat and HL-60 cells using lentivirus. USP5 mRNA and protein expression were detected by RT-qPCR and Western blot, respectively. Cell proliferation and growth were measured by CCK-8 and methylcellulose colony-forming assay. Flow cytometry was used to analyze cell cycle and apoptosis. RESULTS: USP5 was highly expression in AML compared with normal tissues. Up-regulation of USP5 was negatively correlated with the survival of AML patients. USP5 knockdown and overexpression inhibited and promoted the proliferation and colony growth of AML cells, respectively. Cell cycle arrest and apoptosis were induced in USP5 knockdown Jurkat and HL-60 cells. Furthermore, USP5 knockdown inhibited the phosphrylation of AKT, mTOR and 4EBP1. CONCLUSION: Overexpression of USP5 predicts poor survival of AML patients. Targeting USP5 suppresses AKT/mTOR/4EBP1 signaling and reduces the proliferation and growth of AML cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Proliferación Celular , Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Leucemia Mieloide Aguda/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células HL-60 , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células Jurkat , Proteasas Ubiquitina-Específicas/metabolismo , Relevancia Clínica
6.
Front Oncol ; 14: 1394653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38933441

RESUMEN

Novel therapeutic approaches are needed for the treatment of Ewing sarcoma tumors. We previously identified that Ewing sarcoma cell lines are sensitive to drugs that inhibit protein translation. However, translational and therapeutic approaches to inhibit protein synthesis in tumors are limited. In this work, we identified that reactive oxygen species, which are generated by a wide range of chemotherapy and other drugs, inhibit protein synthesis and reduce the level of critical proteins that support tumorigenesis in Ewing sarcoma cells. In particular, we identified that both hydrogen peroxide and auranofin, an inhibitor of thioredoxin reductase and regulator of oxidative stress and reactive oxygen species, activate the repressor of protein translation 4E-BP1 and reduce the levels of the oncogenic proteins RRM2 and PLK1 in Ewing and other sarcoma cell lines. These results provide novel insight into the mechanism of how ROS-inducing drugs target cancer cells via inhibition of protein translation and identify a mechanistic link between ROS and the DNA replication (RRM2) and cell cycle regulatory (PLK1) pathways.

7.
Autophagy ; 20(9): 2017-2040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38744665

RESUMEN

AMPK promotes catabolic and suppresses anabolic cell metabolism to promote cell survival during energetic stress, in part by inhibiting MTORC1, an anabolic kinase requiring sufficient levels of amino acids. We found that cells lacking AMPK displayed increased apoptotic cell death during nutrient stress caused by prolonged amino acid deprivation. We presumed that impaired macroautophagy/autophagy explained this phenotype, as a prevailing view posits that AMPK initiates autophagy (often a pro-survival response) through phosphorylation of ULK1. Unexpectedly, however, autophagy remained unimpaired in cells lacking AMPK, as monitored by several autophagic readouts in several cell lines. More surprisingly, the absence of AMPK increased ULK1 signaling and MAP1LC3B/LC3B lipidation during amino acid deprivation while AMPK-mediated phosphorylation of ULK1 S555 (a site proposed to initiate autophagy) decreased upon amino acid withdrawal or pharmacological MTORC1 inhibition. In addition, activation of AMPK with compound 991, glucose deprivation, or AICAR blunted autophagy induced by amino acid withdrawal. These results demonstrate that AMPK activation and glucose deprivation suppress autophagy. As AMPK controlled autophagy in an unexpected direction, we examined how AMPK controls MTORC1 signaling. Paradoxically, we observed impaired reactivation of MTORC1 in cells lacking AMPK upon prolonged amino acid deprivation. Together these results oppose established views that AMPK promotes autophagy and inhibits MTORC1 universally. Moreover, they reveal unexpected roles for AMPK in the suppression of autophagy and the support of MTORC1 signaling in the context of prolonged amino acid deprivation. These findings prompt a reevaluation of how AMPK and its control of autophagy and MTORC1 affect health and disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Aminoácidos , Autofagia , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Aminoácidos/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Humanos , Animales , Fosforilación , Ratones , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Glucosa/metabolismo , Apoptosis/efectos de los fármacos
8.
BMC Cancer ; 24(1): 582, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741069

RESUMEN

BACKGROUND: Local recurrence after surgery and radiochemotherapy seriously affects the prognosis of locally advanced rectal cancer (LARC) patients. Studies on molecular markers related to the radiochemotherapy sensitivity of cancers have been widely carried out, which might provide valued information for clinicians to carry out individual treatment. AIM: To find potential biomarkers of tumors for predicting postoperative recurrence. METHODS: In this study, LARC patients undergoing surgery and concurrent radiochemotherapy were enrolled. We focused on clinicopathological factors and PTEN, SIRT1, p-4E-BP1, and pS6 protein expression assessed by immunohistochemistry in 73 rectal cancer patients with local recurrence and 76 patients without local recurrence. RESULTS: The expression of PTEN was higher, while the expression of p-4E-BP1 was lower in patients without local recurrence than in patients with local recurrence. Moreover, TNM stage, lymphatic vessel invasion (LVI), PTEN and p-4E-BP1 might be independent risk factors for local recurrence after LARC surgery combined with concurrent radiochemotherapy. CONCLUSIONS: This study suggests that PTEN and p-4E-BP1 might be potential biomarkers for prognostic prediction and therapeutic targets for LARC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Biomarcadores de Tumor , Proteínas de Ciclo Celular , Quimioradioterapia , Recurrencia Local de Neoplasia , Fosfohidrolasa PTEN , Neoplasias del Recto , Humanos , Neoplasias del Recto/terapia , Neoplasias del Recto/patología , Neoplasias del Recto/metabolismo , Fosfohidrolasa PTEN/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Quimioradioterapia/métodos , Biomarcadores de Tumor/metabolismo , Anciano , Pronóstico , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fosfoproteínas/metabolismo , Adulto , Estadificación de Neoplasias
9.
Exp Eye Res ; 244: 109927, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750784

RESUMEN

Subconjunctival fibrosis is the major cause of failure in both conventional and modern minimally invasive glaucoma surgeries (MIGSs) with subconjunctival filtration. The search for safe and effective anti-fibrotic agents is critical for improving long-term surgical outcomes. In this study, we investigated the effect of inhibiting the rapamycin-insensitive mTORC1/4E-BP1 axis on the transforming growth factor-beta 1(TGF-ß1)-induced fibrotic responses in human Tenon's fibroblasts (HTFs), as well as in a rat model of glaucoma filtration surgery (GFS). Primary cultured HTFs were treated with 3 ng/mL TGF-ß1 for 24 h, followed by treatment with 10 µM CZ415 for additional 24 h. Rapamycin (10 µM) was utilized as a control for mTORC1/4E-BP1 signaling insensitivity. The expression levels of fibrosis-associated molecules were measured using quantitative real-time PCR, Western blotting, and immunofluorescence analysis. Cell migration was assessed through the scratch wound assay. Additionally, a rat model of GFS was employed to evaluate the anti-fibrotic effect of CZ415 in vivo. Our findings indicated that both rapamycin and CZ415 treatment significantly reduced the TGF-ß1-induced cell proliferation, migration, and the expression of pro-fibrotic factors in HTFs. CZ415 also more effectively inhibited TGF-ß1-mediated collagen synthesis in HTFs compared to rapamycin. Activation of mTORC1/4E-BP signaling following TGF-ß1 exposure was highly suppressed by CZ415 but was only modestly inhibited by rapamycin. Furthermore, CZ415 was found to decrease subconjunctival collagen deposition in rats post GFS. Our results suggest that rapamycin-insensitive mTORC1/4E-BP1 signaling plays a critical role in TGF-ß1-driven collagen synthesis in HTFs. This study demonstrated that inhibition of the mTORC1/4E-BP1 axis offers superior anti-fibrotic efficacy compared to rapamycin and represents a promising target for improving the success rate of both traditional and modern GFSs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Fibroblastos , Fibrosis , Diana Mecanicista del Complejo 1 de la Rapamicina , Sirolimus , Cápsula de Tenon , Factor de Crecimiento Transformador beta1 , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Humanos , Ratas , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Sirolimus/farmacología , Fibrosis/metabolismo , Cápsula de Tenon/metabolismo , Cápsula de Tenon/efectos de los fármacos , Células Cultivadas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Western Blotting , Ratas Sprague-Dawley , Proteínas de Ciclo Celular/metabolismo , Transducción de Señal , Reacción en Cadena en Tiempo Real de la Polimerasa , Masculino , Glaucoma/metabolismo , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Inmunosupresores/farmacología
10.
Int J Hematol ; 119(5): 541-551, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530586

RESUMEN

This study investigated the effect of rapamycin alone and in combination with chemotherapy (doxorubicin and cytarabine) on AML. Human acute monocytic leukemia cell line SHI-1 and NPG AML model mice created by intravenous injection of SHI-1 cell were treated with rapamycin, chemotherapy, or rapamycin plus chemotherapy. Analysis by cell counting kit-8, western blot, flow cytometry, and immunohistochemistry was performed, and results suggested that both rapamycin and chemotherapy inhibited proliferation of SHI-1 cells both in vitro and in vivo, suppressed neoplasm growth in vivo, and promoted survival of NPG AML mice. The antitumor effect of rapamycin plus chemotherapy was better than that of rapamycin alone and chemotherapy alone. In addition, western blot results demonstrated that rapamycin inhibited the phosphorylation of mTOR downstream targets 4EBP1 and S6K1 in SHI-1 cells, and increased the pro-apoptosis-related protein Bax and autophagy-associated proteins Beclin-1, LC3B-II, and ATG5 while reducing the anti-apoptosis-related protein Bcl-2. In conclusion, the results of this study indicate that rapamycin acts synergistically with doxorubicin and cytarabine in AML treatment, and its underlying mechanism might be associated with mTORC1 pathway-mediated apoptosis and autophagy.


Asunto(s)
Apoptosis , Autofagia , Doxorrubicina , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Sirolimus , Animales , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Sirolimus/farmacología , Línea Celular Tumoral , Doxorrubicina/farmacología , Transducción de Señal/efectos de los fármacos , Citarabina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Sinergismo Farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
11.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474373

RESUMEN

The mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that functions via its discrete binding partners to form two multiprotein complexes, mTOR complex 1 and 2 (mTORC1 and mTORC2). Rapamycin-sensitive mTORC1, which regulates protein synthesis and cell growth, is tightly controlled by PI3K/Akt and is nutrient-/growth factor-sensitive. In the brain, mTORC1 is also sensitive to neurotransmitter signaling. mTORC2, which is modulated by growth factor signaling, is associated with ribosomes and is insensitive to rapamycin. mTOR regulates stem cell and cancer stem cell characteristics. Aberrant Akt/mTOR activation is involved in multistep tumorigenesis in a variety of cancers, thereby suggesting that the inhibition of mTOR may have therapeutic potential. Rapamycin and its analogues, known as rapalogues, suppress mTOR activity through an allosteric mechanism that only suppresses mTORC1, albeit incompletely. ATP-catalytic binding site inhibitors are designed to inhibit both complexes. This review describes the regulation of mTOR and the targeting of its complexes in the treatment of cancers, such as glioblastoma, and their stem cells.


Asunto(s)
Glioblastoma , Células Madre Neoplásicas , Sirolimus , Humanos , Glioblastoma/metabolismo , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Células Madre Neoplásicas/metabolismo
12.
Neurooncol Adv ; 6(1): vdae024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476930

RESUMEN

Background: NF2-associated meningiomas are progressive, highly morbid, and nonresponsive to chemotherapies, highlighting the need for improved treatments. We have established aberrant activation of the mechanistic target of rapamycin (mTOR) signaling in NF2-deficient tumors, leading to clinical trials with first- and second-generation mTOR inhibitors. However, results have been mixed, showing stabilized tumor growth without shrinkage offset by adverse side effects. To address these limitations, here we explored the potential of third-generation, bi-steric mTOR complex 1 (mTORC1) inhibitors using the preclinical tool compound RMC-6272. Methods: Employing human NF2-deficient meningioma lines, we compared mTOR inhibitors rapamycin (first-generation), INK128 (second-generation), and RMC-6272 (third-generation) using in vitro dose-response testing, cell-cycle analysis, and immunoblotting. Furthermore, the efficacy of RMC-6272 was assessed in NF2-null 3D-spheroid meningioma models, and its in vivo potential was evaluated in 2 orthotopic meningioma mouse models. Results: Treatment of meningioma cells revealed that, unlike rapamycin, RMC-6272 demonstrated superior growth inhibitory effects, cell-cycle arrest, and complete inhibition of phosphorylated 4E-BP1 (mTORC1 readout). Moreover, RMC-6272 had a longer retention time than INK128 and inhibited the expression of several eIF4E-sensitive targets on the protein level. RMC-6272 treatment of NF2 spheroids showed significant shrinkage in size as well as reduced proliferation. Furthermore, in vivo studies in mice revealed effective blockage of meningioma growth by RMC-6272, compared with vehicle controls. Conclusions: Our study in preclinical models of NF2 supports possible future clinical evaluation of third-generation, investigational mTORC1 inhibitors, such as RMC-5552, as a potential treatment strategy for NF2.

13.
Int J Mol Sci ; 25(4)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38397070

RESUMEN

In recent years, research into Parkinson's disease and similar neurodegenerative disorders has increasingly suggested that these conditions are synonymous with failures in proteostasis. However, the spotlight of this research has remained firmly focused on the tail end of proteostasis, primarily aggregation, misfolding, and degradation, with protein translation being comparatively overlooked. Now, there is an increasing body of evidence supporting a potential role for translation in the pathogenesis of PD, and its dysregulation is already established in other similar neurodegenerative conditions. In this paper, we consider how altered protein translation fits into the broader picture of PD pathogenesis, working hand in hand to compound the stress placed on neurons, until this becomes irrecoverable. We will also consider molecular players of interest, recent evidence that suggests that aggregates may directly influence translation in PD progression, and the implications for the role of protein translation in our development of clinically useful diagnostics and therapeutics.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Neuronas/metabolismo , Proteostasis , Biosíntesis de Proteínas , alfa-Sinucleína/metabolismo
14.
Autophagy ; 20(2): 365-379, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37712850

RESUMEN

Cerebral ischemia induces massive mitochondrial damage, leading to neuronal death. The elimination of damaged mitochondria via mitophagy is critical for neuroprotection. Here we show that the level of PA2G4/EBP1 (proliferation-associated 2G4) was notably increased early during transient middle cerebral artery occlusion and prevented neuronal death by eliciting cerebral ischemia-reperfusion (IR)-induced mitophagy. Neuron-specific knockout of Pa2g4 increased infarct volume and aggravated neuron loss with impaired mitophagy and was rescued by introduction of adeno-associated virus serotype 2 expressing PA2G4/EBP1. We determined that PA2G4/EBP1 is ubiquitinated on lysine 376 by PRKN/PARKIN on the damaged mitochondria and interacts with receptor protein SQSTM1/p62 for mitophagy induction. Thus, our study suggests that PA2G4/EBP1 ubiquitination following cerebral IR-injury promotes mitophagy induction, which may be implicated in neuroprotection.Abbreviations: AAV: adeno-associated virus; ACTB: actin beta; BNIP3L/NIX: BCL2 interacting protein 3 like; CA1: Cornu Ammonis 1; CASP3: caspase 3; CCCP: carbonyl cyanide m-chlorophenyl hydrazone; DMSO: dimethyl sulfoxide; PA2G4/EBP1: proliferation-associated 2G4; FUNDC1: FUN14 domain containing 1; IB: immunoblotting; ICC: immunocytochemistry; IHC: immunohistochemistry; IP: immunoprecipitation; MCAO: middle cerebral artery occlusion; MEF: mouse embryonic fibroblast; OGD: oxygen-glucose deprivation; PRKN/PARKIN: parkin RBR E3 ubiquitin protein ligase; PINK1: PTEN induced kinase 1; RBFOX3/NeuN: RNA binding fox-1 homolog 3; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; TUBB: tubulin beta class I; WT: wild-type.


Asunto(s)
Isquemia Encefálica , Mitofagia , Animales , Ratones , Mitofagia/genética , Proteína Sequestosoma-1/metabolismo , Infarto de la Arteria Cerebral Media , Autofagia , Proteínas Quinasas/metabolismo , Fibroblastos/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
15.
J Ethnopharmacol ; 321: 117553, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065349

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fei-Yan-Qing-Hua decoction (FYQHD), derived from the renowned formula Ma Xing Shi Gan tang documented in Zhang Zhong Jing's "Treatise on Exogenous Febrile Disease" during the Han Dynasty, has demonstrated notable efficacy in the clinical treatment of pneumonia resulting from bacterial infection. However, its molecular mechanisms underlying the therapeutic effects remains elusive. AIM OF THE STUDY: This study aimed to investigate the protective effects of FYQHD against lipopolysaccharide (LPS) and carbapenem-resistant Klebsiella pneumoniae (CRKP)-induced sepsis in mice and to elucidate its specific mechanism of action. MATERIALS AND METHODS: Sepsis models were established in mice through intraperitoneal injection of LPS or CRKP. FYQHD was administered via gavage at low and high doses. Serum cytokines, bacterial load, and pathological damage were assessed using enzyme-linked immunosorbent assay (ELISA), minimal inhibitory concentration (MIC) detection, and hematoxylin and eosin staining (H&E), respectively. In vitro, the immunoregulatory effects of FYQHD on macrophages were investigated through ELISA, MIC, quantitative real-time PCR (Q-PCR), immunofluorescence, Western blot, and a network pharmacological approach. RESULTS: The application of FYQHD in the treatment of LPS or CRKP-induced septic mouse models revealed significant outcomes. FYQHD increased the survival rate of mice exposed to a lethal dose of LPS to 33.3%, prevented hypothermia (with a rise of 3.58 °C), reduced pro-inflammatory variables (including TNF-α, IL-6, and MCP-1), and mitigated tissue damage in LPS or CRKP-induced septic mice. Additionally, FYQHD decreased bacterial load in CRKP-infected mice. In vitro, FYQHD suppressed the expression of inflammatory cytokines in macrophages activated by LPS or HK-CRKP. Mechanistically, FYQHD inhibited the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby suppressing the translational level of inflammatory cytokines. Furthermore, it reduced the expression of HMGB1/RAGE, a positive feedback loop in the inflammatory response. Moreover, FYQHD was found to enhance the phagocytic activity of macrophages by upregulating the expression of phagocytic receptors such as CD169 and SR-A1. CONCLUSION: FYQHD provides protection against bacterial sepsis by concurrently inhibiting the inflammatory response and augmenting the phagocytic ability of immune cells.


Asunto(s)
Proteína HMGB1 , Sepsis , Ratones , Animales , Lipopolisacáridos/farmacología , Proteína HMGB1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Citocinas/metabolismo , Fagocitosis , Sepsis/tratamiento farmacológico
16.
Stem Cells ; 42(1): 13-28, 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37931173

RESUMEN

Insight into the molecular mechanisms governing the development and maintenance of pluripotency is important for understanding early development and the use of stem cells in regenerative medicine. We demonstrate the selective inhibition of mTORC1 signaling is important for developing the inner cell mass (ICM) and the self-renewal of human embryonic stem cells. S6K suppressed the expression and function of pluripotency-related transcription factors (PTFs) OCT4, SOX2, and KLF4 through phosphorylation and ubiquitin proteasome-mediated protein degradation, indicating that S6K inhibition is required for pluripotency. PTFs inhibited mTOR signaling. The phosphorylation of S6 was decreased in PTF-positive cells of the ICM in embryos. Activation of mTORC1 signaling blocked ICM formation and the selective inhibition of S6K by rapamycin increased the ICM size in mouse blastocysts. Thus, selective inhibition of mTORC1 signaling supports the development and maintenance of pluripotency.


Asunto(s)
Blastocisto , Transducción de Señal , Humanos , Animales , Ratones , Sirolimus/farmacología , Fosforilación , Diana Mecanicista del Complejo 1 de la Rapamicina
17.
Int J Mol Sci ; 24(22)2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-38003508

RESUMEN

FMRP is a multifunctional protein encoded by the Fragile X Messenger Ribonucleoprotein 1 gene (FMR1). The inactivation of the FMR1 gene results in fragile X syndrome (FXS), a serious neurodevelopmental disorder. FMRP deficiency causes abnormal neurite outgrowth, which is likely to lead to abnormal learning and memory capabilities. However, the mechanism of FMRP in modulating neuronal development remains unknown. We found that FMRP enhances the translation of 4EBP2, a neuron-specific form of 4EBPs that inactivates eIF4E by inhibiting the interaction between eIF4E and eIF4G. Depletion of 4EBP2 results in abnormal neurite outgrowth. Moreover, the impairment of neurite outgrowth upon FMRP depletion was overcome by the ectopic expression of 4EBP2. These results suggest that FMRP controls neuronal development by enhancing 4EBP2 expression at the translational level. In addition, treatment with 4EGI-1, a chemical that blocks eIF4E activity, restored neurite length in FMRP-depleted and 4EBP2-depleted cells. In conclusion, we discovered that 4EBP2 functions as a key downstream regulator of FMRP activity in neuronal development and that FMRP represses eIF4E activity by enhancing 4EBP2 translation.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil , Humanos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Neuronas/metabolismo , Síndrome del Cromosoma X Frágil/genética , Diferenciación Celular/genética
18.
Int Immunopharmacol ; 125(Pt B): 111172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951193

RESUMEN

Inhibition of mammalian target of rapamycin (mTOR), which is a component of both mTORC1 and mTORC2, leads to clinical benefits for organ transplant recipients. Pathways to inhibit mTOR include strengthening the association of FKBP12-mTOR or competing with ATP at the active site of mTOR, which have been applied to the design of first- and second-generation mTOR inhibitors, respectively. However, the clinical efficacy of these mTOR inhibitors may be limited by side effects, compensatory activation of kinases and attenuation of feedback inhibition of receptor expression. A new generation of mTOR inhibitors possess a core structure similar to rapamycin and covalently link to mTOR kinase inhibitors, resulting in moderate selectivity and potent inhibition of mTORC1. Since the immunosuppressive potential of this class of compounds remains unknown, our goal is to examine the therapeutic efficacy of a third-generation mTOR inhibitor in organ transplantation. In this study, RapaLink-1 outperformed rapamycin in inhibiting T-cell proliferation and significantly prolonged graft survival time. Mechanistically, the ameliorated rejection induced by RapaLink-1 is associated with a reduction in p-4E-BP1 in T cells, resulting in an elevation in Treg cells alongside a decline in Th1 and Th17 cells. For the first time, these studies demonstrate the effectiveness of third-generation mTOR inhibitors in inhibiting allograft rejection, highlighting the potential of this novel class of mTOR inhibitors for further investigation.


Asunto(s)
Inhibidores mTOR , Sirolimus , Animales , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina , Sirolimus/uso terapéutico , Serina-Treonina Quinasas TOR , Aloinjertos , Mamíferos
19.
Nutrients ; 15(22)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004105

RESUMEN

AIM: To evaluate the effects of resistance exercise training (RET) and/or glutamine supplementation (GS) on signaling protein synthesis in adult rat skeletal muscles. METHODS: The following groups were studied: (1) control, no exercise (C); (2) exercise, hypertrophy resistance exercise training protocol (T); (3) no exercise, supplemented with glutamine (G); and (4) exercise and supplemented with glutamine (GT). The rats performed hypertrophic training, climbing a vertical ladder with a height of 1.1 m at an 80° incline relative to the horizontal with extra weights tied to their tails. The RET was performed three days a week for five weeks. Each training session consisted of six ladder climbs. The extra weight load was progressively increased for each animal during each training session. The G groups received daily L-glutamine by gavage (one g per kilogram of body weight per day) for five weeks. The C group received the same volume of water during the same period. The rats were euthanized, and the extensor digitorum longus (EDL) muscles from both hind limbs were removed and immediately weighed. Glutamine and glutamate concentrations were measured, and histological, signaling protein contents, and mRNA expression analyses were performed. RESULTS: Supplementation with free L-glutamine increased the glutamine concentration in the EDL muscle in the C group. The glutamate concentration was augmented in the EDL muscles from T rats. The EDL muscle mass did not change, but a significant rise was reported in the cross-sectional area (CSA) of the fibers in the three experimental groups. The levels of the phosphorylated proteins (pAkt/Akt, pp70S6K/p70S6K, p4E-BP1/4E-BP1, and pS6/S6 ratios) were significantly increased in EDL muscles of G rats, and the activation of p4E-BP1 was present in T rats. The fiber CSAs of the EDL muscles in T, G, and GT rats were increased compared to the C group. These changes were accompanied by a reduction in the 26 proteasome activity of EDL muscles from T rats. CONCLUSION: Five weeks of GS and/or RET induced muscle hypertrophy, as indicated by the increased CSAs of the EDL muscle fibers. The increase in CSA was mediated via the upregulated phosphorylation of Akt, 4E-BP1, p70S6k, and S6 in G animals and 4E-BP1 in T animals. In the EDL muscles from T animals, a decrease in proteasome activity, favoring a further increase in the CSA of the muscle fibers, was reported.


Asunto(s)
Glutamina , Condicionamiento Físico Animal , Ratas , Animales , Glutamina/farmacología , Glutamina/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratas Wistar , Músculo Esquelético/metabolismo , Hipertrofia , Suplementos Dietéticos , Glutamatos/farmacología , Condicionamiento Físico Animal/fisiología
20.
J Biol Chem ; 299(11): 105315, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37797700

RESUMEN

A high-fat diet (HFD) plays a critical role in hepatocyte insulin resistance. Numerous models and factors have been proposed to elucidate the mechanism of palmitic acid (PA)-induced insulin resistance. However, proteomic studies of insulin resistance by HFD stimulation are usually performed under insulin conditions, leading to an unclear understanding of how a HFD alone affects hepatocytes. Here, we mapped the phosphorylation rewiring events in PA-stimulated HepG2 cells and found PA decreased the phosphorylation level of the eukaryotic translation initiation factor 4E-binding protein 2 (4EBP2) at S65/T70. Further experiments identified 4EBP2 as a key node of insulin resistance in either HFD mice or PA-treated cells. Reduced 4EBP2 levels increased glucose uptake and insulin sensitivity, whereas the 4EBP2_S65A/T70A mutation exacerbated PA-induced insulin resistance. Additionally, the nascent proteome revealed many glycolysis-related proteins translationally regulated by 4EBP2 such as hexokinase-2, pyruvate kinase PKM, TBC1 domain family member 4, and glucose-6-phosphate 1-dehydrogenase. In summary, we report the critical role of 4EBP2 in regulating HFD-stimulated insulin resistance in hepatocytes.


Asunto(s)
Resistencia a la Insulina , Animales , Masculino , Ratones , Proteínas Portadoras/metabolismo , Línea Celular , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones Endogámicos C57BL , Ácido Palmítico/metabolismo , Biosíntesis de Proteínas , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA