Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673988

RESUMEN

In Parkinson's disease (PD), along with typical motor dysfunction, abnormal breathing is present; the cause of which is not well understood. The study aimed to analyze the effects of stimulation of the serotonergic system with 5-HT1A and 5-HT2A agonists in a model of PD induced by injection of 6-hydroxydopamine (6-OHDA). To model PD, bilateral injection of 6-OHDA into both striata was performed in male Wistar rats. Respiratory disturbances in response to 7% hypercapnia (CO2 in O2) in the plethysmographic chamber before and after stimulation of the serotonergic system and the incidence of apnea were studied in awake rats 5 weeks after 6-OHDA or vehicle injection. Administration of 6-OHDA reduced the concentration of serotonin (5-HT), dopamine (DA) and norepinephrine (NA) in the striatum and the level of 5-HT in the brainstem of treated rats, which have been associated with decreased basal ventilation, impaired respiratory response to 7% CO2 and increased incidence of apnea compared to Sham-operated rats. Intraperitoneal (i.p.) injection of the 5-HT1AR agonist 8-OH-DPAT and 5-HT2AR agonist NBOH-2C-CN increased breathing during normocapnia and hypercapnia in both groups of rats. However, it restored reactivity to hypercapnia in 6-OHDA group to the level present in Sham rats. Another 5-HT2AR agonist TCB-2 was only effective in increasing normocapnic ventilation in 6-OHDA rats. Both the serotonergic agonists 8-OH-DPAT and NBOH-2C-CN had stronger stimulatory effects on respiration in PD rats, compensating for deficits in basal ventilation and hypercapnic respiration. We conclude that serotonergic stimulation may have a positive effect on respiratory impairments that occur in PD.


Asunto(s)
Hipercapnia , Enfermedad de Parkinson , Receptor de Serotonina 5-HT1A , Receptor de Serotonina 5-HT2A , Animales , Masculino , Ratas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Norepinefrina/metabolismo , Norepinefrina/farmacología , Oxidopamina/farmacología , Enfermedad de Parkinson/metabolismo , Ratas Wistar , Receptor de Serotonina 5-HT1A/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Respiración/efectos de los fármacos , Serotonina/metabolismo , Agonistas del Receptor de Serotonina 5-HT1/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología
2.
Neurochem Res ; 49(3): 636-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37989895

RESUMEN

Hallucinogenic 5-HT2A receptor (5-HT2AR) agonists-induced head-twitch response (HTR) is regulated by Gs signaling pathway. Formation of heterodimers between 5-HT2AR and metabotropic glutamate mGlu2 receptor (mGluR2) is essential for the hallucinogenic 5-HT2AR agonist-induced HTR. In order to investigate the effects of mGluR2 agonists and inverse agonists on hallucinogenic 5-HT2AR agonists DOM-induced HTR, C57BL/6 mice were pretreated with mGluR2 agonists (LY379268, LY354740, LY404039) or the inverse agonist LY341495, and the HTR was manually counted after administering DOM immediately. IP-One (IP1) HTRF assay and cAMP assay were performed to evaluate the effect of LY341495 or LY354740 on DOM-induced Gq and Gs activation in Human Embryonic Kidney-293 (HEK-293) T-type cells co-expressing 5-HT2AR and mGluR2. The results showed that DOM-induced HTR in mice was dose-dependently inhibited by LY379268, LY354740, and LY404039, while it was dose-dependently enhanced by LY341495. Moreover, LY341495 reversed the inhibitory effect of LY354740 on DOM-induced HTR. In HEK-293T cells co-expressing 5-HT2AR and mGluR2, DOM-induced cAMP level was decreased by LY354740 and increased by LY341495, but DOM-induced IP1 level was not regulated by LY354740 or LY341495. The regulation of DOM-induced HTR by mGluR2 agonists and inverse agonists is closely related to 5-HT2AR-mediated Gs signaling pathway. In HEK-293T cells co-expressing 5-HT2AR and mGluR2 A677S/A681P/A685G mutant (mGluR2 3 A mutant), DOM-induced cAMP level was not regulated by LY354740, but was significantly enhanced by LY341495. The 5-HT2AR/mGluR2 heterodimers is critical for DOM-induced HTR and cAMP level, both of which are inhibited by mGluR2 agonists and enhanced by mGluR2 inverse agonists.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Compuestos Bicíclicos con Puentes , Óxidos S-Cíclicos , Agonismo Inverso de Drogas , Receptores de Glutamato Metabotrópico , Serotonina , Ratones , Humanos , Animales , Células HEK293 , Ratones Endogámicos C57BL , Transducción de Señal
3.
Artículo en Inglés | MEDLINE | ID: mdl-37955822

RESUMEN

Psychedelic drugs such as psilocybin and ketamine are returning to clinical research and intervention across several disorders including the treatment of depression. This chapter focusses on psychedelics that specifically target the 5-HT2A receptor such as psilocybin and DMT. These produce plasma-concentration related psychological effects such as hallucinations and out of body experiences, insightful and emotional breakthroughs as well as mystical-type experiences. When coupled with psychological support, effects can produce a rapid improvement in mood among people with depression that can last for months. In this chapter, we summarise the scientific studies to date that explore the use of psychedelics in depressed individuals, highlighting key clinical, psychological and neuroimaging features of psychedelics that may account for their therapeutic effects. These include alterations in brain entropy that disrupt fixed negative ruminations, a period of post-treatment increased cognitive flexibility, and changes in self-referential psychological processes. Finally, we propose that the brain mechanisms underlying the therapeutic effect of serotonergic psychedelics might be distinct from those underlying classical serotonin reuptake-blocking antidepressants.

4.
Neurotherapeutics ; 20(6): 1875-1892, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37782408

RESUMEN

Dopamine and serotonin signalling are associated with major depressive disorder, which is a prevalent life-threatening illness worldwide. Numerous FDA-approved dopamine/serotonin signalling-modifying drugs are available but are associated with concurrent side effects and limited efficacy. Thus, identifying and targeting their signalling pathway is crucial for improving depression treatment. Here, we determined that serotonin receptor 2A (5-HT2AR) abundantly forms a protein complex with dopamine receptor 1 (D1R) in high abundance via its carboxy-terminus in the brains of mice subjected to various chronic stress paradigms. Furthermore, the D1R/5-HT2AR interaction elicited CREB/ERK/AKT modulation during synaptic regulation. An interfering peptide (TAT-5-HT2AR-SV) agitated the D1R/5-HT2AR interaction and attenuated depressive symptoms accompanied by CREB/ERK molecule costimulation. Interestingly, HDAC antagonism but not TrkB antagonism reversed the antidepressant effect of competitive peptides. These findings revealed a novel D1R/5-HT2AR heteroreceptor complex mechanism in the pathophysiology of depression, and their uncoupling ameliorates depressive-like behaviours through HDAC-, and not BDNF-, dependent mechanisms.


Asunto(s)
Trastorno Depresivo Mayor , Receptores Dopaminérgicos , Ratones , Animales , Serotonina , Dopamina , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
5.
Front Pharmacol ; 14: 1239159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886127

RESUMEN

Opioid misuse and opioid-involved overdose deaths are a massive public health problem involving the intertwined misuse of prescription opioids for pain management with the emergence of extremely potent fentanyl derivatives, sold as standalone products or adulterants in counterfeit prescription opioids or heroin. The incidence of repeated opioid overdose events indicates a problematic use pattern consistent with the development of the medical condition of opioid use disorder (OUD). Prescription and illicit opioids reduce pain perception by activating µ-opioid receptors (MOR) localized to the central nervous system (CNS). Dysregulation of meso-corticolimbic circuitry that subserves reward and adaptive behaviors is fundamentally involved in the progressive behavioral changes that promote and are consequent to OUD. Although opioid-induced analgesia and the rewarding effects of abused opioids are primarily mediated through MOR activation, serotonin (5-HT) is an important contributor to the pharmacology of opioid abused drugs (including heroin and prescription opioids) and OUD. There is a recent resurgence of interest into psychedelic compounds that act primarily through the 5-HT2A receptor (5-HT 2A R) as a new frontier in combatting such diseases (e.g., depression, anxiety, and substance use disorders). Emerging data suggest that the MOR and 5-HT2AR crosstalk at the cellular level and within key nodes of OUD circuitry, highlighting a major opportunity for novel pharmacological intervention for OUD. There is an important gap in the preclinical profiling of psychedelic 5-HT2AR agonists in OUD models. Further, as these molecules carry risks, additional analyses of the profiles of non-hallucinogenic 5-HT2AR agonists and/or 5-HT2AR positive allosteric modulators may provide a new pathway for 5-HT2AR therapeutics. In this review, we discuss the opportunities and challenges associated with utilizing 5-HT2AR agonists as therapeutics for OUD.

6.
Molecules ; 28(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37687065

RESUMEN

Commercially available cathinones are drugs of long-term abuse drugs whose pharmacology is fairly well understood. While their psychedelic effects are associated with 5-HT2AR, the enclosed study summarizes efforts to shed light on the pharmacodynamic profiles, not yet known at the receptor level, using molecular docking and three-dimensional quantitative structure-activity relationship (3-D QSAR) studies. The bioactive conformations of cathinones were modeled by AutoDock Vina and were used to build structure-based (SB) 3-D QSAR models using the Open3DQSAR engine. Graphical inspection of the results led to the depiction of a 3-D structure analysis-activity relationship (SAR) scheme that could be used as a guideline for molecular determinants by which any untested cathinone molecule can be predicted as a potential 5-HT2AR binder prior to experimental evaluation. The obtained models, which showed a good agreement with the chemical properties of co-crystallized 5-HT2AR ligands, proved to be valuable for future virtual screening campaigns to recognize unused cathinones and similar compounds, such as 5-HT2AR ligands, minimizing both time and financial resources for the characterization of their psychedelic effects.


Asunto(s)
Alucinógenos , Drogas Ilícitas , Simulación del Acoplamiento Molecular , Serotonina , Alucinógenos/farmacología , Ligandos , Relación Estructura-Actividad Cuantitativa
7.
Methods Mol Biol ; 2687: 65-76, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37464163

RESUMEN

Head-twitch response (HTR) allows for the detection and classification of behavior associated with serotonin 2A receptor (5-HT2AR) activation upon psychedelic administration in rodent models. This activation and functional output can be utilized to provide insights into molecular mechanisms associated with psychosis and to identify signaling processes related to existing and novel antipsychotic and psychedelic compounds. Here we describe the use of a magnetic ear tag reporter coupled with automated quantification and biphasic detection to identify HTR in mice treated with the classical psychedelic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI).


Asunto(s)
Antipsicóticos , Alucinógenos , Ratones , Animales , Alucinógenos/farmacología , Anfetaminas
8.
Biochim Biophys Acta Proteins Proteom ; 1871(4): 140914, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019325

RESUMEN

Magic mushrooms, and their extract psilocybin, are well-known for their psychedelic properties and recreational use. Psilocin, the bio-active form of psilocybin, can potentially treat various psychiatric diseases. Psilocin putatively exerts its psychedelic effect as an agonist to the serotonin 2A receptor (5-HT2AR), which is also the receptor for the neurological hormone serotonin. The two key chemical differences between the two molecules are first, that the primary amine in serotonin is replaced with a tertiary amine in psilocin, and second, the hydroxyl group is substituted differently on the aromatic ring. Here, we find that psilocin can bind to 5-HT2AR with an affinity higher than serotonin, and provide the molecular logic behind the higher binding affinity of psilocin using extensive molecular dynamics simulations and free energy calculations. The binding free energy of psilocin is dependent upon the protonation states of the ligands, as well as that of the key residue in the binding site: Aspartate 155. We find that the tertiary amine of psilocin, and not the altered substitution of the hydroxyl group in the ring is responsible for the increased affinity of psilocin. We propose design rules for effective antidepressants based on molecular insights from our simulations.


Asunto(s)
Alucinógenos , Psilocibina , Alucinógenos/farmacología , Alucinógenos/química , Serotonina , Aminas
9.
Mol Divers ; 27(5): 2217-2238, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36409431

RESUMEN

Some important atypical antipsychotic drugs target the serotonergic receptor 2A (5-HT2AR). Currently, new therapeutic strategies are needed to offer faster onset of action with fewer side effects and, therefore, greater efficacy in a substantial proportion of patients with neuropsychological disorders such as Autism and Parkinson. The main objective of this work was to use SBDD methods to identify new hit compounds potentially useful as precursors of novel and selective 5-HT2AR antagonists. A structure-based pharmacophore screening study based on a selective antagonist was carried out in ten databases. The set obtained was refined using molecular docking, and the five most promising compounds were subjected to molecular dynamics simulations. The most stable and promising hit occupied a side pocket present in the 5-HT2AR, a site that can be explored to obtain selective ligands. Simulations against 5-HT2CR and D2R showed that the best hit could not form stable complexes with these targets, strengthening the hypothesis that the hit presents selective binding by the receptor of interest. The selected hits showed some predicted toxicity risk or violated some drug-likeness property. However, it can be concluded that the identified hits are the most promising for performing in vitro assays. Once the presence of activity is confirmed, they could become precursors of optimized and selective antagonists of 5-HT2AR. An SBDD study was carried out to identify new selective 5-HT2AR ligands potentially useful for designing selective atypical antipsychotics.


Asunto(s)
Antipsicóticos , Humanos , Antipsicóticos/farmacología , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Serotonina , Farmacóforo , Ligandos , Unión Proteica
10.
Life Sci ; 314: 121315, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36581095

RESUMEN

Peripheral 5-hydroxytryptamine 2A receptor (5-HT2AR) could be a new pharmacological target for NASH, an evolution of NAFLD characterized by hepatic steatosis, cytoskeletal alterations, and hepatic inflammation that can arise with or without fibrosis. SJT4a is a synthetic ß-carboline antagonist for 5-HT2AR developed by SJT molecular research to treat NASH. We performed a combined in silico/in vivo study on this potential drug to elucidate its activity and possible mechanism of action. The in silico protocol compares SJT4a with four known 5-HT2AR ligands with different activities (LSD, methiothepin, zotepine, risperidone). We performed molecular docking calculations, evaluation of binding energy by AI-based methods and Molecular Dynamics simulations of the five ligand-target complexes. Moreover, we used a pseudo-semantic analysis to evaluate the potential mechanism of action of SJT4a. In silico predictions and pseudo-semantic analysis suggested antagonistic activity for SJT4a. The in silico prediction was confirmed by [3H]-5HT radioligand binding together with SJT4a competition analysis in CHO-K1 cell cultures expressing 5-HT2AR. SJT4a was then tested in vivo. We investigated the effect of 8 weeks of treatment with SJT4A on metabolic parameters, liver pathology, NAFLD activity score, and fibrosis stage in male DIO-NASH C57BL/6 J mice diet-induced obesity fed with an obesogenic diet compared with DIO-NASH and LEAN-CHOW vehicles. In our tests, SJT4a showed intense activity in diminishing the most relevant hallmarks of NASH in the DIO-NASH mice model. We proposed a possible mode of action for SJT4a based on its 5-HT2AR antagonist activity.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Masculino , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Simulación del Acoplamiento Molecular , Ratones Endogámicos C57BL , Hígado/metabolismo , Cirrosis Hepática/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad
11.
Chinese Pharmacological Bulletin ; (12): 1201-1205, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013758

RESUMEN

The serotonin 2A receptor(5-HT

12.
J Neurosci ; 42(45): 8439-8449, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351821

RESUMEN

Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.


Asunto(s)
Alucinógenos , Neurociencias , Humanos , Alucinógenos/farmacología , Alucinógenos/uso terapéutico , Encéfalo , Plasticidad Neuronal
13.
Addict Biol ; 27(6): e13233, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36301212

RESUMEN

Cannabis use disorder is frequent in schizophrenia patients, and it is associated with an earlier age of onset and poor schizophrenia prognosis. Serotonin 2A receptors (5-HT2AR) have been involved in psychosis and, like Akt kinase, are known to be modulated by THC. Likewise, endocannabinoid system dysregulation has been suggested in schizophrenia. The presence of these molecules in blood makes them interesting targets, as they can be evaluated in patients by a minimally invasive technique. The aim of the present study was to evaluate 5-HT2AR protein expression and the Akt functional status in platelet homogenates of subjects diagnosed with schizophrenia, cannabis use disorder, or both conditions, compared with age- and sex-matched control subjects. Additionally, endocannabinoids and pro-inflammatory interleukin-6 (IL-6) levels were also measured in the plasma of these subjects. Results showed that both platelet 5-HT2AR and the active phospho (Ser473)Akt protein expression were significantly increased in schizophrenia subjects, whereas patients with a dual diagnosis of schizophrenia and cannabis use disorder did not show significant changes. Similarly, plasma concentrations of anandamide and other lipid mediators such as PEA and DEA, as well as the pro-inflammatory IL-6, were significantly increased in schizophrenia, but not in dual subjects. Results demonstrate that schizophrenia subjects show different circulating markers pattern depending on the associated diagnosis of cannabis use disorder, supporting the hypothesis that there could be different underlying mechanisms that may explain clinical differences among these groups. Moreover, they provide the first preliminary evidence of peripherally measurable molecules of interest for bigger prospective studies in these subpopulations.


Asunto(s)
Cannabis , Abuso de Marihuana , Esquizofrenia , Humanos , Esquizofrenia/metabolismo , Interleucina-6 , Estudios Prospectivos , Proteínas Proto-Oncogénicas c-akt , Agonistas de Receptores de Cannabinoides , Biomarcadores
14.
Neurosci Lett ; 789: 136864, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36063980

RESUMEN

Chronic pain remains a disabling disease with limited therapeutic options. Pyramidal neurons in the prefrontal cortex (PFC) express excitatory Gq-coupled 5-HT2A receptors (5-HT2AR) and their effector system, the inhibitory Kv7 ion channel. While recent publications show these cells innervate brainstem regions important for regulating pain, the cellular mechanisms underlying the transition to chronic pain are not well understood. The present study examined whether local blockade of 5-HT2AR or enhanced Kv7 ion channel activity in the PFC would attenuate mechanical allodynia associated with spared nerve injury (SNI) in rats. Following SNI, we show that inhibition of PFC 5-HT2ARs with M100907 or opening of PFC Kv7 channels with retigabine reduced mechanical allodynia. Parallel proteomic and RNAScope experiments evaluated 5-HT2AR/Kv7 channel protein and mRNA. Our results support the role of 5-HT2ARs and Kv7 channels in the PFC in the maintenance of chronic pain.


Asunto(s)
Dolor Crónico , Neuralgia , Animales , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/metabolismo , Hiperalgesia/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Corteza Prefrontal/metabolismo , Proteómica , ARN Mensajero/metabolismo , Ratas , Serotonina/metabolismo
15.
ACS Chem Neurosci ; 13(16): 2436-2448, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35900876

RESUMEN

Classical psychedelics represent a subgroup of serotonergic psychoactive substances characterized by their distinct subjective effects on the human psyche. Another unique attribute of this drug class is that such effects become less apparent after repeated exposure within a short time span. The classification of psychedelics as a subgroup within the serotonergic drug family and the tolerance to their effects are replicated by the murine head twitch response (HTR) behavioral paradigm. Here, we aimed to assess tolerance and cross-tolerance to HTR elicited by psychedelic and nonpsychedelic serotonin 2A receptor (5-HT2AR) agonists in mice. We show that repeated (4 days) administration of the psychedelic 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) induced a progressive decrease in HTR behavior. Tolerance to DOI-induced HTR was also observed 24 h after a single administration of this psychedelic. Pretreatment with the 5-HT2AR antagonist M100907 reduced not only the acute manifestation of DOI-induced HTR, but also the development of tolerance to HTR. Additionally, cross-tolerance became apparent between the psychedelics DOI and lysergic acid diethylamide (LSD), whereas repeated administration of the nonpsychedelic 5-HT2AR agonist lisuride did not affect the ability of these two psychedelics to induce HTR. At the molecular level, DOI administration led to down-regulation of 5-HT2AR density in mouse frontal cortex membrane preparations. However, development of tolerance to the effect of DOI on HTR remained unchanged in ß-arrestin-2 knockout mice. Together, these data suggest that tolerance to HTR induced by psychedelics involves activation of the 5-HT2AR, is not observable upon repeated administration of nonpsychedelic 5-HT2AR agonists, and occurs via a signaling mechanism independent of ß-arrestin-2.


Asunto(s)
Alucinógenos , Anfetaminas/farmacología , Animales , Conducta Animal , Alucinógenos/farmacología , Humanos , Ratones , Ratones Noqueados , Receptor de Serotonina 5-HT2A , Serotonina/farmacología , Agonistas del Receptor de Serotonina 5-HT2/farmacología , beta-Arrestinas
16.
Biochem Biophys Res Commun ; 598: 20-25, 2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35149433

RESUMEN

5- HT2A receptor is a member of the family A G-protein-coupled receptor. It is involved in many psychiatric disorders, such as depression, addiction and Parkinson's disease. 5-HT2AR targeted drugs play an important role in regulating cognition, memory, emotion and other physiological function by coupling G proteins, and their most notable function is stimulating the serotonergic hallucination. However, not all 5-HT2AR agonists exhibit hallucinogenic activity, such as lisuride. Molecular mechanisms of these different effects are not well illustrated. This study suggested that 5-HT2AR coupled both Gs and Gq protein under hallucinogenic agonists DOM and 25CN-NBOH stimulation, but nonhallucinogenic agonist lisuride and TBG only activates Gq signaling. Moreover, in head twitch response (HTR) model, we found that cAMP analogs 8-Bromo-cAMP and PDE4 inhibitor Rolipram could increase HTR, while Gs protein inhibitor Melittin could reduce HTR. Collectively, these results revealed that Gs signaling is a key signaling pathway that may distinguish hallucinogenic agonists and nonhallucinogenic agonists.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Alucinógenos/farmacología , Movimientos de la Cabeza/efectos de los fármacos , Agonistas del Receptor de Serotonina 5-HT2/farmacología , Animales , AMP Cíclico/metabolismo , Células HEK293 , Movimientos de la Cabeza/fisiología , Humanos , Lisurida/farmacología , Masculino , Meliteno/farmacología , Ratones Endogámicos C57BL , Rolipram/farmacología , Transducción de Señal/efectos de los fármacos
17.
J Neurochem ; 162(1): 39-59, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34978711

RESUMEN

Serotonergic psychedelics are substances that induce alterations in mood, perception, and thought, and have the activation of serotonin (5-HT) 2A receptors (5-HT2A Rs) as a main pharmacological mechanism. Besides their appearance on the (illicit) drug market, e.g. as new psychoactive substances, their potential therapeutic application is increasingly explored. This group of substances demonstrates a broad structural variety, leading to insufficiently described structure-activity relationships, hence illustrating the need for better functional characterization. This review therefore elaborates on the in vitro molecular techniques that have been used the most abundantly for the characterization of (psychedelic) 5-HT2A R agonists. More specifically, this review covers assays to monitor the canonical G protein signaling pathway (e.g. measuring G protein recruitment/activation, inositol phosphate accumulation, or Ca2+ mobilization), assays to monitor non-canonical G protein signaling (such as arachidonic acid release), assays to monitor ß-arrestin recruitment or signaling, and assays to monitor receptor conformational changes. In particular, focus lies on the mechanism behind the techniques, and the specific advantages and challenges that are associated with these. Additionally, several variables are discussed that one should consider when attempting to compare functional outcomes from different studies, both linked to the specific assay mechanism and linked to its specific execution, as these may heavily impact the assay outcome.


Asunto(s)
Alucinógenos , Fármacos del Sistema Nervioso Central , Alucinógenos/química , Alucinógenos/farmacología , Receptor de Serotonina 5-HT2A , Receptores de Serotonina , Serotonina , Agonistas del Receptor de Serotonina 5-HT2/farmacología
18.
IBRO Neurosci Rep ; 11: 88-102, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34485973

RESUMEN

Post-Traumatic Stress Disorder (PTSD), characterized by re-experiencing, avoidance, negative affect, and impaired memory processing, may develop after traumatic events. PTSD is complicated by impaired plasticity and medial prefrontal cortex (mPFC) activity, hyperactivity of the amygdala, and impaired fear extinction. Cannabidiol (CBD) is a promising candidate for treatment due to its multimodal action that enhances plasticity and calms hyperexcitability. CBD's mechanism in the mPFC of PTSD patients has been explored extensively, but literature on the mechanism in the dorsal raphe nucleus (DRN) is lacking. Following the PRISMA guidelines, we examined current literature regarding CBD in PTSD and overlapping symptomologies to propose a mechanism by which CBD treats PTSD via corticoraphe circuit. Acute CBD inhibits excess 5-HT release from DRN to amygdala and releases anandamide (AEA) onto amygdala inputs. By first reducing amygdala and DRN hyperactivity, CBD begins to ameliorate activity disparity between mPFC and amygdala. Chronic CBD recruits the mPFC, creating harmonious corticoraphe signaling. DRN releases enough 5-HT to ameliorate mPFC hypoactivity, while the mPFC continuously excites DRN 5-HT neurons via glutamate. Meanwhile, AEA regulates corticoraphe activity to stabilize signaling. AEA prevents DRN GABAergic interneurons from inhibiting 5-HT release so the DRN can assist the mPFC in overcoming its hypoactivity. DRN-mediated restoration of mPFC activity underlies CBD's mechanism on fear extinction and learning of stress coping.

19.
Naunyn Schmiedebergs Arch Pharmacol ; 394(12): 2381-2388, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34550406

RESUMEN

PURPOSE: Antagonising serotonin (5-HT) type 2A receptors (5-HT2AR) is an effective strategy to alleviate both dyskinesia and psychosis in Parkinson's disease (PD). We have recently shown that activation of metabotropic glutamate 2 receptors (mGluR2), via either orthosteric stimulation or positive allosteric modulation, enhances the anti-dyskinetic and anti-psychotic effects of 5-HT2AR antagonism. Here, we investigated if greater therapeutic efficacy would be achieved by combining 5-HT2AR antagonism with concurrent mGluR2 orthosteric stimulation and mGluR2 positive allosteric modulation. METHODS: Five 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned marmosets exhibiting dyskinesia and psychosis-like behaviours (PLBs) were administered L-3,4-dihydroxyphenylalanine (L-DOPA) in combination with vehicle or the 5-HT2AR antagonist EMD-281,014. EMD-281,014 was itself administered alone or with the mGluR2 orthosteric agonist (OA) LY-354,740, the mGluR2 positive allosteric modulator (PAM) LY-487,379 and combination thereof, after which the severity of dyskinesia, PLBs and parkinsonism was rated. RESULTS: EMD-281,014 reduced dyskinesia and PLBs by up to 47% and 40%, respectively (both P < 0.001). The addition of LY-354,740, LY-487,379 and LY-354,740/LY-487,379 decreased dyskinesia by 56%, 65% and 77%, while PLBs were diminished by 55%, 63% and 71% (all P < 0.001). All treatment combinations provided anti-dyskinetic and anti-psychotic benefits significantly greater than those conferred by EMD-281,014 alone (all P < 0.05). The combination of EMD-281,014/LY-354,740/LY-487,379 resulted in anti-dyskinetic and anti-psychotic effects significantly greater than those conferred by EMD-281,014 with either LY-354,740 or LY-487,379 (both P < 0.05). No deleterious effects on L-DOPA anti-parkinsonian action were observed. CONCLUSION: Our results suggest that combining 5-HT2AR antagonism with mGluR2 activation results in greater reduction of L-DOPA-induced dyskinesia and PD psychosis. They also indicate that further additive effect can be achieved when a mGluR2 OA and a mGluR2 PAM are combined with a 5-HT2AR antagonist than when a mGluR2 OA or a mGluR2 PAM are added to a 5-HT2AR antagonist.


Asunto(s)
Antiparkinsonianos/farmacología , Levodopa/farmacología , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Psicóticos/tratamiento farmacológico , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/toxicidad , Conducta Animal/efectos de los fármacos , Compuestos Bicíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos con Puentes/farmacología , Callithrix , Quimioterapia Combinada , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/prevención & control , Femenino , Indoles/administración & dosificación , Indoles/farmacología , Levodopa/administración & dosificación , Levodopa/toxicidad , Masculino , Trastornos Parkinsonianos/psicología , Piperazinas/administración & dosificación , Piperazinas/farmacología , Trastornos Psicóticos/etiología , Piridinas/administración & dosificación , Piridinas/farmacología , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo , Antagonistas del Receptor de Serotonina 5-HT2/administración & dosificación , Antagonistas del Receptor de Serotonina 5-HT2/farmacología , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología
20.
Molecules ; 26(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065494

RESUMEN

Central among the tools and approaches used for ligand discovery and design are Molecular Dynamics (MD) simulations, which follow the dynamic changes in molecular structure in response to the environmental condition, interactions with other proteins, and the effects of ligand binding. The need for, and successes of, MD simulations in providing this type of essential information are well documented, but so are the challenges presented by the size of the resulting datasets encoding the desired information. The difficulty of extracting information on mechanistically important state-to-state transitions in response to ligand binding and other interactions is compounded by these being rare events in the MD trajectories of complex molecular machines, such as G-protein-coupled receptors (GPCRs). To address this problem, we have developed a protocol for the efficient detection of such events. We show that the novel Rare Event Detection (RED) protocol reveals functionally relevant and pharmacologically discriminating responses to the binding of different ligands to the 5-HT2AR orthosteric site in terms of clearly defined, structurally coherent, and temporally ordered conformational transitions. This information from the RED protocol offers new insights into specific ligand-determined functional mechanisms encoded in the MD trajectories, which opens a new and rigorously reproducible path to understanding drug activity with application in drug discovery.


Asunto(s)
Aprendizaje Automático , Receptores Acoplados a Proteínas G/química , Humanos , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA