RESUMEN
PIWI proteins are stem cell-associated RNA-binding proteins crucial for survival of germ stem cells. In cancer, PIWI proteins are overexpressed. Specifically, PIWIL4 is highly expressed in multiple cancers with the highest levels found in acute myeloid leukemia (AML), an aggressive malignancy propagated by a population of leukemia stem cells (LSCs). Bamezai et al. (Blood Journal, blood, 2023, 142, 90-105) demonstrated that PIWIL4 supports AML blasts and LSCs but is not necessary for healthy human hematopoietic progenitor stem cells (HSPCs) function in vivo. PIWIL4 in AML acts by preventing the accumulation of R-loops in key genes for LSCs persistence implicated in: DNA damage, replicative stress, and transcription arrest. We report that PIWIL4 expression significantly decreases in THP-1 monocytes exposed to a differentiating agent, suggesting a potential role for PIWIL4 in maintaining the undifferentiated state of myeloid cells. PIWIL4 overexpression could lead to the emergence of LSCs, driving leukemia propagation and maintenance. Our findings correlate with the persistent overexpression of PIWIL4 in myeloid cancers as reported by Bamezai et al., and suggest that PIWIL4 may be involved in myeloid cell differentiation. In this perspective, we highlight recent findings on the implication of PIWI pathway in maintaining AML stemness. Additionally, we propose further investigation on the role of PIWI pathway in oncogenesis and cellular differentiation as a strategy to identify biomarkers and therapeutic targets for AML.
RESUMEN
Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies. The MLL-AF9 fusion protein is often linked with therapy-resistant AML, highlighting the risk of relapse due to standard chemotherapeutic regimes. In this sense, factors like the ZEB, SNAI, and TWIST gene families, known for their roles in epithelial-mesenchymal transition (EMT) and cancer metastasis, also regulate hematopoiesis and may serve as effective therapeutic targets in AML. These genes contribute to cell proliferation, differentiation, and extramedullary hematopoiesis, suggesting new possibilities for treatment. Advancing our understanding of the molecular mechanisms that promote AML, especially how the bone marrow microenvironment affects invasion and drug resistance, is crucial. This comprehensive insight into the molecular and environmental interactions in AML emphasizes the need for ongoing research and more effective treatments.
RESUMEN
Rearrangements and overexpression of CRLF2 are hallmarks of poor outcomes in BCR::ABL1-like B-ALL, and CRLF2 overexpression is a high-risk marker in T-ALL. However, CRLF2 alterations in pediatric hematologic malignancies other than B-ALL have not been reported. In this study, we analyzed the CRLF2 overexpression, rearrangements (P2RY8::CRLF2 and IGH::CRLF2), activation (pSTAT5 and pERK), and the expression of dominant-negative IKZF1 isoforms (Ik6 and Ik8), implied in CRLF2 dysregulation, in 16 pediatric patients (AML, n = 9; T-ALL, n = 3; LBL, n = 2; HL, n = 1; cytopenia, n = 1). A high frequency of CRLF2 rearrangements and overexpression was found in the 16 patients: 28.6% (4/14) showed CRLF2 overexpression, 93.8% (15/16) were positive for CRLF2 total protein (cell-surface and/or cytoplasmic), while 62.5% (10/16) were positive for P2RY8::CRLF2 and 12.6% (2/16) for IGH::CRLF2. In addition, 43.8% (7/16) expressed Ik6 and Ik8 isoforms. However, only a few patients were positive for the surrogate markers pSTAT5 (14.3%; 2/14) and pERK (21.4%; 3/14).
RESUMEN
Acute myelogenous leukaemia (AML) originates and is maintained by leukaemic stem cells (LSCs) that are inherently resistant to antiproliferative therapies, indicating that a critical strategy for overcoming chemoresistance in AML therapy is to eradicate LSCs. In this work, we investigated the anti-AML activity of bortezomib (BTZ), emphasizing its anti-LSC potential, using KG-1a cells, an AML cell line with stem-like properties. BTZ presented potent cytotoxicity to both solid and haematological malignancy cells and reduced the stem-like features of KG-1a cells, as observed by the reduction in CD34- and CD123-positive cells. A reduction in NF-κB p65 nuclear staining was observed in BTZ-treated KG-1a cells, in addition to upregulation of the NF-κB inhibitor gene NFΚBIB. BTZ-induced DNA fragmentation, nuclear condensation, cell shrinkage and loss of transmembrane mitochondrial potential along with an increase in active caspase-3 and cleaved PARP-(Asp 214) level in KG-1a cells. Furthermore, BTZ-induced cell death was partially prevented by pretreatment with the pancaspase inhibitor Z-VAD-(OMe)-FMK, indicating that BTZ induces caspase-mediated apoptosis. BTZ also increased mitochondrial superoxide levels in KG-1a cells, and BTZ-induced apoptosis was partially prevented by pretreatment with the antioxidant N-acetylcysteine, indicating that BTZ induces oxidative stress-mediated apoptosis in KG-1a cells. At a dosage of 0.1 mg/kg every other day for 2 weeks, BTZ significantly reduced the percentage of hCD45-positive cells in the bone marrow and peripheral blood of NSG mice engrafted with KG-1a cells with tolerable toxicity. Taken together, these data indicate that the anti-LSC potential of BTZ appears to be an important strategy for AML treatment.
Asunto(s)
Bortezomib , Leucemia Mieloide Aguda , FN-kappa B , Células Madre Neoplásicas , Estrés Oxidativo , Bortezomib/farmacología , Estrés Oxidativo/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Animales , FN-kappa B/metabolismo , Línea Celular Tumoral , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones SCIDRESUMEN
Leukemias of the AML, CML, and CLL types are the most common blood cancers worldwide, making them a major global public health problem. Furthermore, less than 24% of patients treated with conventional chemotherapy (low-risk patients) and 10-15% of patients ineligible for conventional chemotherapy (high-risk patients) survive five years. The low levels of survival are mainly due to toxicity and resistance to chemotherapy or other medication, the latter leading to relapse of the disease, which is the main obstacle to the treatment of leukemia. Drug resistance may include different molecular mechanisms, among which epigenetic regulators are involved. Silent information regulator 2 homolog 1 (SIRT1) is an epigenetic factor belonging to the sirtuin (SIRT) family known to regulate aspects of chromatin biology, genome stability, and metabolism, both in homeostasis processes and in different diseases, including cancer. The regulatory functions of SIRT1 in different biological processes and molecular pathways are dependent on the type and stage of the neoplasia; thus, it may act as both an oncogenic and tumor suppressor factor and may also participate in drug resistance. In this review, we explore the role of SIRT1 in drug-resistant leukemia and its potential as a therapeutic target.
Asunto(s)
Resistencia a Antineoplásicos , Neoplasias Hematológicas , Leucemia , Sirtuina 1 , Humanos , Cromatina , Resistencia a Antineoplásicos/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Leucemia/genética , Leucemia/terapia , Sirtuina 1/genética , Sirtuina 1/metabolismoRESUMEN
BACKGROUND: Hematopoiesis, the process of blood cell formation involves on a complex network of transcription factors. Among them, the CCAAT-enhancer-binding protein alpha (CEBPA) plays a crucial role in maintaining the balance between myeloid proliferation and differentiation. Imbalances in this network can lead to disrupted differentiation and contribute to the development of malignant diseases. AIM: Understanding of disease development and explore potential therapeutic strategies for hematological disorders associated CEPBA gen. MATERIALS AND METHODS: The research involved a comprehensive analysis of CEBPA gene mutations in the context of acute myeloid leukemia (AML). This encompassed a thorough exploration of point mutations and double mutations in AML patients. RESULTS: In the context of acute myeloid leukemia (AML), mutations in the CEBPA gene, especially point mutations, are frequently observed. A significant number of AML patients present with double mutations in CEBPA, which have been linked to a more favorable prognosis in terms of overall survival and event-free survival. These patients also tend to exhibit enhanced responsiveness to treatment. DISCUSSION: Unraveling the intricate interplay of transcription factors, particularly CEBPA, holds significant implications for decoding the mechanisms governing hematopoiesis. This understanding offers a potential avenue for deciphering disease development and devising novel therapeutic strategies for hematological disorders. CONCLUSION: The findings underscore that CEBPA mutations correlate with enhanced overall survival and event-free survival, with relevance to those presenting within the bZip framework. This knowledge may contribute to advancing personalized treatments for hematological conditions.
Asunto(s)
Leucemia Mieloide Aguda , Humanos , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Mutación , Proteínas Potenciadoras de Unión a CCAAT/genética , Factores de Transcripción/genéticaRESUMEN
ABSTRACT Introduction: Relapse of acute myeloid leukemia (AML) after allogeneic stem cell transplantation (allo-SCT) leads to dismal outcomes. This study aimed to identify high-risk patients and explore the effects of cytomegalovirus (CMV) reactivation in a high CMV-seropositive population. Methods: The study involved a single-center retrospective cohort in Thailand, analyzing clinical risk factors and CMV-mediated immune responses, correlated with transplant outcomes in AML patients. Results: Eighty-five patients with AML in complete remission (CR) undergoing HLA-matched myeloablative allo-SCT between 2011 and February 2021 were enrolled. The relapse rate was 27.1% with the median time of 7 months after transplantation. The 3-year relapse-free-survival (RFS) and overall-survival (OS) were 72.2% and 80.8%, respectively. The disease status (>CR1) and absence of chronic graft-versus-host disease (cGVHD) were independently significant adverse prognostic factors of RFS and OS. Ninety-two percent of recipient-donor pairs were both CMV seropositive. The CMV reactivation occurred in 54.1% of the patients. The clinically significant CMV infection rate was 49.4%. No CMV syndrome/disease or CMV-related mortality occurred. One-year cumulative incidence of relapse among CMV-reactivation and non-reactivation groups were 14.3% and 25.6%, respectively, without a statistically significant difference. Transplantation-related mortality was 11.1%. Conclusions: The transplantation beyond CR1 and absence of cGVHD are powerful prognostic factors associated with inferior RFS and OS. In a high CMV prevalence country, there appears to be no impact of CMV reactivation on relapse in AML patients undergoing an allo-SCT.
Asunto(s)
Citomegalovirus , Leucemia Mieloide AgudaRESUMEN
BACKGROUND: Voltage-dependent anion selective channels (VDACs) are the most abundant mitochondrial outer membrane proteins, encoded in mammals by three genes, VDAC1, 2 and 3, mostly ubiquitously expressed. As 'mitochondrial gatekeepers', VDACs control organelle and cell metabolism and are involved in many diseases. Despite the presence of numerous VDAC pseudogenes in the human genome, their significance and possible role in VDAC protein expression has not yet been considered. RESULTS: We investigated the relevance of processed pseudogenes of human VDAC genes, both in physiological and in pathological contexts. Using high-throughput tools and querying many genomic and transcriptomic databases, we show that some VDAC pseudogenes are transcribed in specific tissues and pathological contexts. The obtained experimental data confirm an association of the VDAC1P8 pseudogene with acute myeloid leukemia (AML). CONCLUSIONS: Our in-silico comparative analysis between the VDAC1 gene and its VDAC1P8 pseudogene, together with experimental data produced in AML cellular models, indicate a specific over-expression of the VDAC1P8 pseudogene in AML, correlated with a downregulation of the parental VDAC1 gene.
Asunto(s)
Leucemia Mieloide Aguda , Seudogenes , Canales Aniónicos Dependientes del Voltaje , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mitocondrias , Seudogenes/genética , Transcriptoma , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismoRESUMEN
Additional cytogenetic abnormalities (ACA) are known to crop up in Ph+ cells of chronic myeloid leukemia (CML) patients due to cytogenetic evolution. But the frequency of molecular evolution and ACA is much less in Ph- cells of CML patients and is poorly understood. We report an interesting and rare case of Ph+ CML, who progressed to B lymphoblastic crisis, achieved remission, and later developed Ph- acute myeloid leukemia (AML) with KMT2A gene rearrangement and no detectable BCR- ABL transcripts.
RESUMEN
Acute myeloid leukemia (AML) is an aggressive hematologic cancer in adults. Some patients exhibit restricted T cell infiltration and do not respond to routine treatments. This may be prevented by enhancing adaptive immunity by stimulating innate immune cells inside the tumor microenvironment (TME). To activate the adaptive immunological reaction against tumors, type I interferons (IFNs) can promote the presentation of tumor-specific cytotoxic T lymphocyte (CTL) cell recruitment. During the activation of innate immunity, cyclic di-nucleotides (CDNs) bind to and stimulate the stimulator of interferon genes (STING), a protein localized inside the endoplasmic reticulum (ER) membrane, resulting in the expression of type I IFNs. The efficacy of STING agonists as effective stimulators of the anti-tumor response in AML is being investigated in numerous clinical studies. Therefore, the purpose of this investigation was to thoroughly review existing knowledge in this field and provide perspective into the clinical potential of STING agonists in AML.
Asunto(s)
Inmunidad Innata , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Nucleótidos Cíclicos , Inmunidad Adaptativa , Interferones , Inmunoterapia/métodos , Microambiente TumoralRESUMEN
BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy with high molecular and clinical heterogeneity, and is the most common type of acute leukemia in adults. Due to limited treatment options, AML is prone to relapse and has a poor prognosis. Excision repair cross-complementing 3 (ERCC3) is an important member of nucleotide excision repair (NER) that is overexpressed in types of solid cancers and potentially regarded as a prognostic factor. However, its role in AML remains unclear. The purpose of this study was to explore ERCC3 expression and functions in AML. METHODS: The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) were used to test the accuracy of ERCC3 expression levels for AML diagnosis. Using online databases and R packages, we also explored the signaling pathway, epigenetic regulation, infiltration of immune cells, clinical prognostic value, and ceRNA network in AML. RESULTS: Our results revealed that ERCC3 expression was increased in AML and that high ERCC3 expression had good value for disease-free survival and overall survival in AML patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT). We found that ERCC3 and co-expressed genes were mainly involved in chemical carcinogenesis/reactive oxygen species, ubiquitin-mediated protein degradation and oxidative phosphorylation. In addition, almost all the m6A-related coding genes (except GF2BP1) were positively associated with ERCC3 expression. We also constructed a ceRNA regulatory network containing ERCC3 in AML and identified 6 pairs of ceRNA networks, indicating that ERCC3 expression is regulated by a noncoding RNA system. CONCLUSION: This study demonstrated that ERCC3 was overexpressed in AML and that high ERCC3 expression can be considered a biomarker conducive to allo-HSCT in AML patients.
Asunto(s)
Epigénesis Genética , Leucemia Mieloide Aguda , Adulto , Humanos , Leucemia Mieloide Aguda/patología , Pronóstico , Enfermedad Crónica , Reparación del ADNRESUMEN
BACKGROUND: The use of markers has stimulated the development of more appropriate targeted therapies for chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). We assessed the use and prevalence of biological and genetic markers of CLL and AML in the homogeneous Hispanic population of Puerto Rico. METHODS: We used the Puerto Rico CLL/AML Population-Based Registry, which combines information from linked databases. Logistic regression models were used to examine factors associated with biological and genetic testing. RESULTS: A total of 926 patients 18 years or older diagnosed with CLL (n = 518) and AML (n = 408) during 2011-2015 were included in this analysis. Cytogenetic testing (FISH) was reported for 441 (85.1%) of the CLL patients; of those, 24.0% had the presence of trisomy 12, 9.5% carried deletion 11q, 50.3% carried deletion 13q, and 6.3% carried deletion 17p. Regarding AML, patients with cytogenetics and molecular tests were considered to determine the risk category (254 patients), of which 39.8% showed poor or adverse risk. Older age and having more comorbidities among patients with CLL were associated with a lower likelihood of receiving a FISH test. CONCLUSIONS: Although prognostic genetic testing is required for treatment decisions, the amount of testing in this Hispanic cohort is far from ideal. Furthermore, some tests were not homogeneously distributed in the population, which requires further exploration and monitoring. This study contributes to the field by informing the medical community about the use and prevalence of biological and genetic markers of CLL and AML. Similarly, it has the potential to improve the management of CLL and AML through benchmarking.
Asunto(s)
Leucemia Linfocítica Crónica de Células B , Leucemia Mieloide Aguda , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/epidemiología , Leucemia Linfocítica Crónica de Células B/genética , Puerto Rico/epidemiología , Marcadores Genéticos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/epidemiología , Leucemia Mieloide Aguda/genética , Citogenética , PronósticoRESUMEN
INTRODUCTION: Relapse of acute myeloid leukemia (AML) after allogeneic stem cell transplantation (allo-SCT) leads to dismal outcomes. This study aimed to identify high-risk patients and explore the effects of cytomegalovirus (CMV) reactivation in a high CMV-seropositive population. METHODS: The study involved a single-center retrospective cohort in Thailand, analyzing clinical risk factors and CMV-mediated immune responses, correlated with transplant outcomes in AML patients. RESULTS: Eighty-five patients with AML in complete remission (CR) undergoing HLA-matched myeloablative allo-SCT between 2011 and February 2021 were enrolled. The relapse rate was 27.1% with the median time of 7 months after transplantation. The 3-year relapse-free-survival (RFS) and overall-survival (OS) were 72.2% and 80.8%, respectively. The disease status (>CR1) and absence of chronic graft-versus-host disease (cGVHD) were independently significant adverse prognostic factors of RFS and OS. Ninety-two percent of recipient-donor pairs were both CMV seropositive. The CMV reactivation occurred in 54.1% of the patients. The clinically significant CMV infection rate was 49.4%. No CMV syndrome/disease or CMV-related mortality occurred. One-year cumulative incidence of relapse among CMV-reactivation and non-reactivation groups were 14.3% and 25.6%, respectively, without a statistically significant difference. Transplantation-related mortality was 11.1%. CONCLUSIONS: The transplantation beyond CR1 and absence of cGVHD are powerful prognostic factors associated with inferior RFS and OS. In a high CMV prevalence country, there appears to be no impact of CMV reactivation on relapse in AML patients undergoing an allo-SCT.
RESUMEN
Background: The distribution of RUNX1-RUNXT1, PML-RARA, CBFB-MYH11, BCR-ABL1p210 , and KMT2A-MLLT3 in the pediatric population with acute myeloid leukemia (AML) in many countries of Latin America is largely unknown. Therefore, we aimed to investigate the frequency of these fusion genes in children with de novo AML from Mexico City, which has one of the highest incidence rates of acute leukemia in the world. Additionally, we explored their impact in mortality during the first year of treatment. Methods: We retrospectively analyzed the presence of RUNX1-RUNXT1, PML-RARA, CBFB-MYH11, BCR-ABL1p210 , and KMT2A-MLLT3 by RT-PCR among 77 patients (<18 years) diagnosed with de novo AML between 2019 and 2021 in nine Mexico City hospitals. Results: The overall frequency of the fusion genes was 50.7%; RUNX1-RUNXT1 (22.1%) and PML-RARA (20.8%) were the most prevalent, followed by CBFB-MYH11 (5.2%) and BCR-ABL1p210 (2.4%). KMT2A-MLLT3 was not detected. Patients with PML-RARA showed the lowest survival with high early mortality events. However, more studies are required to evaluate the impact of analyzed fusion genes on the overall survival of the Mexican child population with AML. Conclusion: The pediatric population of Mexico City with AML had frequencies of AML1-ETO, PML-RARA, CBFB-MYH11, and BCR-ABL1p210 similar to those of other populations around the world. Patients with BCR-ABL1p210 and CBFB-MYH11 were few or did not die, while those with MLL-AF9 was not detected. Although patients with PML-RARA had a low survival and a high early mortality rate, further studies are needed to determine the long-term impacts of these fusion genes on this Latino population.
RESUMEN
ABSTRACT Introduction: One of the most critical complications in myelodysplastic syndromes (MDS) is the progression to acute myeloid leukemia (AML). The dynamics of clonal evolution in MDS and how acquired mutations can be used as biomarkers to track disease progression remains under investigation. Objective and method: Herein, we investigated the frequency of common myeloid clonal mutations (FLT3, NPM1, JAK2, IDH1 and IDH2) in 88 patients with MDS and 35 AML patients with myelodysplasia-related changes, followed at a single reference center in northeastern Brazil. Results: Overall, 9/88 (10%) ofthe MDSpatients and 9/35 (26%) of the secondary AML patients had at least one mutation. While the JAK2 V617F mutation was the most frequent in the MDS patients, the FLT3, NPM1, IDH1 and IDH2 mutations were more frequently found in the secondary AML group. Furthermore, there was a higher frequency of FLT3, NPM1, IDH1 and IDH2 mutations in MDS patients classified as high-risk subtypes than in those of lower risk. Conclusion: Despite the limited sample size, our data suggest that mutations in FLT3, NPM1, IDH1 and IDH2 genes could be potential biomarkers to detect early disease progression in MDS.
Asunto(s)
Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Síndromes Mielodisplásicos , Leucemia Mieloide Aguda , Evolución ClonalRESUMEN
Background: In Mexico, the incidence of acute myeloid leukemia (AML) has increased in the last few years. Mortality is higher than in developed countries, even though the same chemotherapy protocols are used. CCAAT Enhancer Binding Protein Alpha (CEBPA) mutations are recurrent in AML, influence prognosis, and help to define treatment strategies. CEBPA mutational profiles and their clinical implications have not been evaluated in Mexican pediatric AML patients. Aim of the Study: To identify the mutational landscape of the CEBPA gene in pediatric patients with de novo AML and assess its influence on clinical features and overall survival (OS). Materials and Methods: DNA was extracted from bone marrow aspirates at diagnosis. Targeted massive parallel sequencing of CEBPA was performed in 80 patients. Results: CEBPA was mutated in 12.5% (10/80) of patients. Frameshifts at the N-terminal region were the most common mutations 57.14% (8/14). CEBPA biallelic (CEBPA BI) mutations were identified in five patients. M2 subtype was the most common in CEBPA positive patients (CEBPA POS) (p = 0.009); 50% of the CEBPA POS patients had a WBC count > 100,000 at diagnosis (p = 0.004). OS > 1 year was significantly better in CEBPA negative (CEBPA NEG) patients (p = 0.0001). CEBPA POS patients (either bi- or monoallelic) had a significantly lower OS (p = 0.002). Concurrent mutations in FLT3, CSF3R, and WT1 genes were found in CEBPA POS individuals. Their contribution to poor OS cannot be ruled out. Conclusion: CEBPA mutational profiles in Mexican pediatric AML patients and their clinical implications were evaluated for the first time. The frequency of CEBPA POS was in the range reported for pediatric AML (4.5-15%). CEBPA mutations showed a negative impact on OS as opposed to the results of other studies.
RESUMEN
Acute myeloid leukemia (AML) is an aggressive type of blood cancer affecting bone marrow (BM). In AML, hematopoietic precursors are arrested in the early stages of development and are defined as the presence of ≥ 20% blasts (leukemia cells) in the BM. Toll-like receptors (TLR) are major groups of pattern recognition receptors expressed by almost all innate immune cells that enable them to detect a wide range of pathogen-associated molecular patterns and damage-associated molecular patterns to prime immune responses toward adaptive immunity. Because TLRs are commonly expressed on transformed immune system cells (ranging from blasts to memory cells), they can be a potential option for developing efficient clinical alternatives in hematologic tumors. This is because several in vitro and in vivo investigations have demonstrated that TLR signaling increased the immunogenicity of AML cells, making them more vulnerable to T cell-mediated invasion. This study aimed to review the current knowledge in this field and provide some insight into the therapeutic potentials of TLRs in AML.
Asunto(s)
Leucemia Mieloide Aguda , Moléculas de Patrón Molecular Asociado a Patógenos , Receptores Toll-Like , Adyuvantes Inmunológicos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Receptores de Reconocimiento de Patrones , Transducción de Señal , Receptores Toll-Like/agonistasRESUMEN
BACKGROUND/AIM: Although acute myeloid leukemia (AML) has traditionally been considered an oncological emergency and initiation of therapy is believed to be crucial to minimizing disease-related morbidity and mortality, it has also been suggested that a certain delay in treatment has no negative consequences in terms of response, early mortality, or survival. We aimed to determine the effect of administration of sodium caseinate (SC), a salt of casein, the main milk protein, with cytarabine or with daunorubicin on survival in mice with well-established leukemia. MATERIALS AND METHODS: To assay the time of establishment of leukemia in the bone marrow, Balb/c mice were inoculated with 2.5×10 5 WEHI-3 cells/mouse and after 3, 6 and 9 days were euthanized. Bone marrow mononuclear cells (BM-MNCs) of the femur were obtained and cultured for 120 h with or without rmIL-3 and cell proliferation was evaluated by the crystal violet technique. Then, the effect of administrating SC-cytarabine or SC-daunorubicin on survival rates of mice with well-established leukemia was assayed. Another group of Balb/c mice was inoculated with WEHI-3 cell and after 10 days mice were treated with SC-cytarabine or SC-daunorubicin for 40 days. Survival rates were recorded daily and in surviving mice, the prevalence of bone marrow proliferation after treatment was assayed by the crystal violet technique. RESULTS: The assay on the time of establishment of leukemia shows that in 9 days leukemia cells accumulate in the bone marrow in sufficient quantities to sustain an in vitro culture in the absence of growth factors, and we, thus, used this as a criterion of well-established leukemia. When mice with a burden of leukemic cells of more than 9 days were treated with SC-cytarabine or SC-daunorubicin, this resulted in 55% survival for both treatments, and the proliferation assays showed that the bone marrow retained its normal proliferation capacity. CONCLUSION: SC-cytarabine or SC-daunorubicin treatment prolonged the survival rate of Balb/c mice with a burden of well-established leukemia, and there was no negative impact on bone marrow functionality; however, SC-cytarabine or SC-daunorubicin combination options need to be sought to increase survival beyond 40 days.