Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.730
Filtrar
1.
Biochim Biophys Acta Biomembr ; : 184367, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969202

RESUMEN

The natural product curcumin and some of its analogs are known inhibitors of the transmembrane enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA). Despite their widespread use, the curcuminoids' binding site in SERCA and their relevant interactions with the enzyme remain elusive. This lack of knowledge has prevented the development of curcuminoids into valuable experimental tools or into agents of therapeutic value. We used the crystal structures of SERCA in its E1 conformation in conjunction with computational tools such as docking and surface screens to determine the most likely curcumin binding site, along with key enzyme/inhibitor interactions. Additionally, we determined the inhibitory potencies and binding affinities for a small set of curcumin analogs. The predicted curcumin binding site is a narrow cleft in the transmembrane section of SERCA, close to the transmembrane/cytosol interface. In addition to pronounced complementarity in shape and hydrophobicity profiles between curcumin and the binding pocket, several hydrogen bonds were observed that were spread over the entire curcumin scaffold, involving residues on several transmembrane helices. Docking-predicted interactions were compatible with experimental observations for inhibitory potencies and binding affinities. Based on these findings, we propose an inhibition mechanism that assumes that the presence of a curcuminoid in the binding site arrests the catalytic cycle of SERCA by preventing it from converting from the E1 to the E2 conformation. This blockage of conformational change is accomplished by a combination of steric hinderance and hydrogen-bond-based cross-linking of transmembrane helices that require flexibility throughout the catalytic cycle.

2.
Genes Cells ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965067

RESUMEN

In cells, proteins are synthesized, function, and degraded (dead). Protein synthesis (spring) is important for the life of proteins. However, how proteins die is equally important for organisms. Proteases are secreted from cells and used as nutrients to break down external proteins. Proteases degrade unwanted and harmful cellular proteins. In eukaryotes, a large enzyme complex called the proteasome is primarily responsible for cellular protein degradation. Prokaryotes, such as bacteria, have similar protein degradation systems. In this review, we describe the structure and function of the ClpXP complex in the degradation system, which is an ATP-dependent protease in bacterial cells, with a particular focus on ClpP.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38953524

RESUMEN

This study was to compare glutaminase and Na+, K+-ATPase inhibitory activities of 20 herbal extracts and investigate the isolation, structural elucidation and those inhibitory activities of three triterpenes from the selected extract of Eucalyptus globulus Labill. Three triterpenes, ursolic acid (1), robustanic acid (2) and ursolic acid lactone (3), were identified by analyzing their NMR and MS spectral data and comparison of these with reported data. The IC50 values of 1-3 and the control compound against glutaminase, 6-diazo-5-oxo-l-norleucine (DON), were 443 µM, 334 µM, 963 µM and 134 µM, respectively. The IC50 values of 1, 2 and the control compound against Na+, K+-ATPase and ouabain, were 180 µM, 56 µM and 0.5 µM, respectively. Compounds 1 and 2 may serve as potential lead compounds for the prevention and treatment of neurodegenerative and lifestyle-related diseases by targeting glutaminase and Na+, K+-ATPase. This is the first report on glutaminase and Na+, K+-ATPase inhibitory activities of 2.

4.
Subcell Biochem ; 104: 181-205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963488

RESUMEN

Tailed double-stranded DNA bacteriophage employs a protein terminase motor to package their genome into a preformed protein shell-a system shared with eukaryotic dsDNA viruses such as herpesviruses. DNA packaging motor proteins represent excellent targets for antiviral therapy, with Letermovir, which binds Cytomegalovirus terminase, already licensed as an effective prophylaxis. In the realm of bacterial viruses, these DNA packaging motors comprise three protein constituents: the portal protein, small terminase and large terminase. The portal protein guards the passage of DNA into the preformed protein shell and acts as a protein interaction hub throughout viral assembly. Small terminase recognises the viral DNA and recruits large terminase, which in turn pumps DNA in an ATP-dependent manner. Large terminase also cleaves DNA at the termination of packaging. Multiple high-resolution structures of each component have been resolved for different phages, but it is only more recently that the field has moved towards cryo-EM reconstructions of protein complexes. In conjunction with highly informative single-particle studies of packaging kinetics, these structures have begun to inspire models for the packaging process and its place among other DNA machines.


Asunto(s)
ADN Viral , Proteínas Virales , ADN Viral/genética , ADN Viral/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Empaquetamiento del Genoma Viral/fisiología , Empaquetamiento del ADN , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/metabolismo , Genoma Viral
5.
Artículo en Inglés | MEDLINE | ID: mdl-39004301

RESUMEN

Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the ß-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-ß interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.

6.
Elife ; 122024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994733

RESUMEN

Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+-adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD's asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , ATPasas de Translocación de Protón Vacuolares , Caenorhabditis elegans/genética , Animales , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , División Celular Asimétrica , Apoptosis , Epigénesis Genética , Nucleosomas/metabolismo
8.
Bull Environ Contam Toxicol ; 113(2): 14, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012477

RESUMEN

Total suspended solids (TSS) are a major contributor of anthropogenic impacts to aquatic systems. TSS exposure have been shown to affect the function of gills, but the mode of action is unclear. Zebrafish (Danio rerio) is emerging as an excellent model for mechanistic toxicology, and as there are no baseline studies on TSS effects in zebrafish gills, we tested the hypothesis that environmental concentrations of TSS damages gill structure and function in this species. Adult zebrafish were exposed to either 0, 10, 100, 500, 1000, or 2000 mg/L TSS for 4 days to assess the gill morphology. The minimal concentration that affected the gill structure was further tested for the distribution of key ion transporters, including Na+/K+- ATPase (NKA) and vacuolar-type H+-ATPase (VHA), using confocal microscopy. Our results reveal that TSS concentration as low as 100 mg/L alters the morphology of gills, including greater filament thickness, lamellae thickness, and epithelial lifting. This was also associated with a reduction in NKA immunoreactive (IR) cell count and intensity in the 100 mg/L TSS group, while there was neither a change in the VHA-IR cell count or expression nor the transcript abundance of atp6v1a and atp1a1a4 in the gills. Markers of stress response in these animals, including levels of cortisol, glucose, lactate, and glycogen were not altered after 4 days of TSS exposure. Overall, environmentally relevant concentrations of TSS can damage the gill structure and function in zebrafish and has the potential to enhance the toxicity of contaminants acting via the gills.


Asunto(s)
Branquias , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/fisiología , Branquias/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
9.
Artículo en Inglés | MEDLINE | ID: mdl-39007928

RESUMEN

Up to date, digitalis glycosides, also known as "cardiac glycosides", are inhibitors of the Na+/K+-ATPase. They have a long-standing history as drugs used in patients suffering from heart failure and atrial fibrillation despite their well-known narrow therapeutic range and the intensive discussions on their raison d'être for these indications. This article will review the history and key findings in basic and clinical research as well as potentially overseen pros and cons of these drugs.

10.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000442

RESUMEN

Human defensins are cysteine-rich peptides (Cys-rich peptides) of the innate immune system. Defensins contain an ancestral structural motif (i.e., γ-core motif) associated with the antimicrobial activity of natural Cys-rich peptides. In this study, low concentrations of human α- and ß-defensins showed microbicidal activity that was not associated with cell membrane permeabilization. The cell death pathway was similar to that previously described for human lactoferrin, also an immunoprotein containing a γ-core motif. The common features were (1) cell death not related to plasma membrane (PM) disruption, (2) the inhibition of microbicidal activity via extracellular potassium, (3) the influence of cellular respiration on microbicidal activity, and (4) the influence of intracellular pH on bactericidal activity. In addition, in yeast, we also observed (1) partial K+-efflux mediated via Tok1p K+-channels, (2) the essential role of mitochondrial ATP synthase in cell death, (3) the increment of intracellular ATP, (4) plasma membrane depolarization, and (5) the inhibition of external acidification mediated via PM Pma1p H+-ATPase. Similar features were also observed with BM2, an antifungal peptide that inhibits Pma1p H+-ATPase, showing that the above coincident characteristics were a consequence of PM H+-ATPase inhibition. These findings suggest, for the first time, that human defensins inhibit PM H+-ATPases at physiological concentrations, and that the subsequent cytosolic acidification is responsible for the in vitro microbicidal activity. This mechanism of action is shared with human lactoferrin and probably other antimicrobial peptides containing γ-core motifs.


Asunto(s)
Membrana Celular , ATPasas de Translocación de Protón , Humanos , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , ATPasas de Translocación de Protón/metabolismo , ATPasas de Translocación de Protón/antagonistas & inhibidores , Permeabilidad de la Membrana Celular/efectos de los fármacos , Antiinfecciosos/farmacología , Defensinas/farmacología , Defensinas/metabolismo , Concentración de Iones de Hidrógeno , Saccharomyces cerevisiae/metabolismo , beta-Defensinas/metabolismo , beta-Defensinas/farmacología , Lactoferrina/farmacología , Lactoferrina/metabolismo , Potasio/metabolismo , Pruebas de Sensibilidad Microbiana , Candida albicans/efectos de los fármacos
11.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000521

RESUMEN

The Na,K-ATPase is an α-ß heterodimer. It is well known that the Na,K-ATPase ß subunit is required for the biosynthesis and trafficking of the α subunit to the plasma membrane. During investigation of properties of human ATP1A3 mutations in 293 cells, we observed a reciprocal loss of endogenous ATP1A1 when expressing ATP1A3. Scattered reports going back as far as 1991 have shown that experimental expression of one subunit can result in reduction in another, suggesting that the total amount is strictly limited. It seems logical that either α or ß subunit should be rate-limiting for assembly and functional expression. Here, we present evidence that neither α nor ß may be limiting and that there is another level of control that limits the amount of Na,K-ATPase to physiological levels. We propose that α subunits compete for something specific, like a private chaperone, required to finalize their biosynthesis or to prevent their degradation in the endoplasmic reticulum.


Asunto(s)
Subunidades de Proteína , ATPasa Intercambiadora de Sodio-Potasio , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/genética , Humanos , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Células HEK293 , Mutación , Animales , Retículo Endoplásmico/metabolismo
12.
Function (Oxf) ; 5(4)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38984989

RESUMEN

The proton pumping V-ATPase drives essential biological processes, such as acidification of intracellular organelles. Critically, the V-ATPase domains, V1 and VO, must assemble to produce a functional holoenzyme. V-ATPase dysfunction results in cancer, neurodegeneration, and diabetes, as well as systemic acidosis caused by reduced activity of proton-secreting kidney intercalated cells (ICs). However, little is known about the molecular regulation of V-ATPase in mammals. We identified a novel interactor of the mammalian V-ATPase, Drosophila melanogaster X chromosomal gene-like 1 (Dmxl1), aka Rabconnectin-3A. The yeast homologue of Dmxl1, Rav1p, is part of a complex that catalyzes the reversible assembly of the domains. We, therefore,hypothesized that Dmxl1 is a mammalian V-ATPase assembly factor. Here, we generated kidney IC-specific Dmxl1 knockout (KO) mice, which had high urine pH, like B1 V-ATPase KO mice, suggesting impaired V-ATPase function. Western blotting showed decreased B1 expression and B1 (V1) and a4 (VO) subunits were more intracellular and less colocalized in Dmxl1 KO ICs. In parallel, subcellular fractionation revealed less V1 associated B1 in the membrane fraction of KO cells relative to the cytosol. Furthermore, a proximity ligation assay performed using probes against B1 and a4 V-ATPase subunits also revealed decreased association. We propose that loss of Dmxl1 reduces V-ATPase holoenzyme assembly, thereby inhibiting proton pumping function. Dmxl1 may recruit the V1 domain to the membrane and facilitate assembly with the VO domain and in its absence V1 may be targeted for degradation. We conclude that Dmxl1 is a bona fide mammalian V-ATPase assembly factor.


Asunto(s)
Ratones Noqueados , ATPasas de Translocación de Protón Vacuolares , Animales , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismo , Ratones , Riñón/metabolismo , Genes Esenciales/genética
13.
Environ Pollut ; 358: 124522, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986759

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are a type of organic pollution that can accumulate in crops and hazard human health. This study used phenanthrene (PHE) as a model PAH and employed hydroponic experiments to illustrate the role of indole-3-acetic acid (IAA) in the regulation of PHE accumulation in wheat roots. At optimal concentrations, wheat roots treated with PHE + IAA showed a 46.9% increase in PHE concentration, whereas treatment with PHE + P-chlorophenoxyisobutyric acid resulted in a 38.77% reduction. Transcriptome analysis identified TaSAUR80-5A as the crucial gene for IAA-enhancing PHE uptake. IAA increases plasma membrane H+-ATPase activity, promoting active transport of PHE via the PHE/H+ cotransport mechanism. These results provide not only the theoretical basis necessary to better understand the function of IAA in PAHs uptake and transport by staple crops, but also a strategy for controlling PAHs accumulation in staple crops and enhancing phytoremediation of PAH-contaminated environments.

14.
Biochim Biophys Acta Bioenerg ; 1865(4): 149494, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960079

RESUMEN

Mitochondrial bioenergetics in females and males is different. However, whether mitochondria from male and female brains display differences in enzymes of oxidative phosphorylation remains unknown. Therefore, we characterized mitochondrial complexes from the brains of male and female macaques (Macaca mulatta). Cerebral tissue from male macaques exhibits elevated content and activity of mitochondrial complex I (NADH:ubiquinone oxidoreductase) and higher activity of complex II (succinate dehydrogenase) compared to females. No significant differences between sexes were found in the content of α-ketoglutarate dehydrogenase or in the activities of cytochrome c oxidase and F1Fo ATPase. Our results underscore the need for further investigations to elucidate sex-related mitochondrial differences in humans.

15.
Neurogenetics ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39046620

RESUMEN

FARIMPD (Fetal akinesia, respiratory insufficiency, microcephaly, polymicrogyria, and dysmorphic facies) syndrome is a severe condition caused by ATP1A2 gene variants. The syndrome's novelty and rarity have limited its clinical and molecular knowledge. This research tries to provide new insight by investigating the cause of the early deaths due to FARIMPD syndrome in a particular family and reviewing previous studies. DNA and RNA were extracted from the blood samples of newborns and their parents, followed by whole exome sequencing and segregation analysis. A pathogenic homozygous nonsense variant (c.1234C > T: p.Arg412*) in the ATP1A2 gene was found in newborns. This variant is reported as homozygous for the first time. The migraine symptoms were the result of the heterozygous state of this particular variant, which supported the dominant inheritance pattern of this disease. Real-time PCR was used to analyze ATP1A2 gene expression in the newborns compared to parents and control subjects. The expression analysis also showed significant mRNA degradation in the newborns compared to heterozygous and healthy individuals, due to Nonsense-mediated mRNA Decay phenomena. Our study describes an ATP1A2 nonsense variant (c.1234C > T) that appears compatible with infant survival in the heterozygous and compound heterozygous states but is lethal in the homozygous state.

16.
Bioorg Chem ; 151: 107650, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39042962

RESUMEN

ATPases Associated with Diverse Cellular Activity (AAA+ATPases) are important enzymatic functional proteins in human cells. Thyroid Hormone Receptor Interacting Protein-13 (TRIP13) is a member of this protein superfamily, that partly regulates DNA repair pathways and spindle assembly checkpoints during mitosis. TRIP13 is reported as an oncogene involving multiple pathways in many human malignancies, including multiple myeloma, brain tumors, etc. The structure of TRIP13 reveals the mechanisms for ATP binding and how TRIP13 recognizes the Mitotic Arrest Deficiency-2 (MAD2) protein, with p31comet acting as an adapter protein. DCZ0415, TI17, DCZ5417, and DCZ5418 are the reported small-molecule inhibitors of TRIP13, which have been demonstrated to inhibit TRIP13's biological functions significantly and effective in suppressing various types of malignant cells, indicating that TRIP13 is a significant anticancer drug target. Currently, no systematic reviews are cutting across the functions, structure, and novel inhibitors of TRIP13. This review provides a comprehensive overview of TRIP13's biological functions, its roles in eighteen different cancers, four small molecule inhibitors, different underlying molecular mechanisms, and its functionality as a potential anticancer drug target.

17.
Scand J Med Sci Sports ; 34(7): e14688, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38973702

RESUMEN

AIM: To assess the impact of endurance training on skeletal muscle release of H+ and K+. METHODS: Nine participants performed one-legged knee extension endurance training at moderate and high intensities (70%-85% of Wpeak), three to four sessions·week-1 for 6 weeks. Post-training, the trained and untrained (control) leg performed two-legged knee extension at low, moderate, and high intensities (40%, 62%, and 83% of Wpeak) in normoxia and hypoxia (~4000 m). The legs were exercised simultaneously to ensure identical arterial inflow concentrations of ions and metabolites, and identical power output was controlled by visual feedback. Leg blood flow was measured (ultrasound Doppler), and acid-base variables, lactate- and K+ concentrations were assessed in arterial and femoral venous blood to study K+ and H+ release. Ion transporter abundances were assessed in muscle biopsies. RESULTS: Lactate-dependent H+ release was similar in hypoxia to normoxia (p = 0.168) and was lower in the trained than the control leg at low-moderate intensities (p = 0.060-0.006) but similar during high-intensity exercise. Lactate-independent and total H+ releases were higher in hypoxia (p < 0.05) and increased more with power output in the trained leg (leg-by-power output interactions: p = 0.02). K+ release was similar at low intensity but lower in the trained leg during high-intensity exercise in normoxia (p = 0.024) and hypoxia (p = 0.007). The trained leg had higher abundances of Na+/H+ exchanger 1 (p = 0.047) and Na+/K+ pump subunit α (p = 0.036). CONCLUSION: Moderate- to high-intensity endurance training increases lactate-independent H+ release and reduces K+ release during high-intensity exercise, coinciding with increased Na+/H+ exchanger 1 and Na+/K+ pump subunit α muscle abundances.


Asunto(s)
Entrenamiento Aeróbico , Hipoxia , Ácido Láctico , Pierna , Músculo Esquelético , Potasio , Humanos , Potasio/metabolismo , Potasio/sangre , Hipoxia/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigación sanguínea , Pierna/irrigación sanguínea , Adulto , Ácido Láctico/sangre , Adulto Joven , Protones , Flujo Sanguíneo Regional , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Ejercicio Físico/fisiología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
18.
J Exp Bot ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989653

RESUMEN

In plant biology Fusicoccin (FC) is one of the most studied fungal metabolites to date. Since the structural identification in 1964, much has been learned about its effects on the physiology of plants, about the interference with the action of plant hormones, the molecular nature of the plant receptor(s) for FC and the biosynthetic pathway for FC in the fungus. The finding that the plasma membrane H+-ATPase in combination with 14-3-3 proteins acts as high-affinity receptor for FC was a breakthrough in the field. Ever since, the binding of FC to the ATPase|14-3-3 receptor has taken center stage in explaining all FC induced physiological effects. However, a more critical review shows that this is not at all evident for a number of FC induced effects. Examples of this are: the inhibition of outward rectifying K+-channels in guard cells, the phosphorylation/activation of PEP-carboxylase and malate accumulation, the antagonism with ABA induced production of H2O2 / NO and the effect on ethylene production. In addition, recently two other physiological processes were shown to be targeted by FC, viz. the activation of TORC1 and the interference of FC with the immune response to fungal elicitors. In this review, the notion will be challenged that all FC affected processes start with the binding to and activation of the PM-ATPase and the question is raised whether may be other proteins with a key role in the respective processes are directly targeted by FC. A second unresolved question is whether FC may be another example of a fungal molecule turning out to be a 'copy' of an as yet unknown plant molecule; in analogy to the fungal product and plant hormone gibberellic acid. A relevant question in this respect is whether it is a coincidence that proteins that act in a coordinated fashion during stomatal opening (the ATPases and K+-channels) are targeted by FC? Or are the sites where FC binds in the plant, conserved during evolution because they serve a physiological role, namely the accommodation of a plant produced molecule? In view of the evidence, albeit not conclusive, that plants indeed produce 'FC-like ligands', it is worthwhile to make a renewed attempt with current day improved technology to answer this question and may be upgrade FC or structural analogue(s) to a new level, the level of plant hormone.

19.
Cell Rep ; 43(8): 114473, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39024102

RESUMEN

Mitochondria require the constant import of nuclear-encoded proteins for proper functioning. Impaired protein import not only depletes mitochondria of essential factors but also leads to toxic accumulation of un-imported proteins outside the organelle. Here, we investigate the consequences of impaired mitochondrial protein import in human cells. We demonstrate that un-imported proteins can clog the mitochondrial translocase of the outer membrane (TOM). ATAD1, a mitochondrial ATPase, removes clogged proteins from TOM to clear the entry gate into the mitochondria. ATAD1 interacts with both TOM and stalled proteins, and its knockout results in extensive accumulation of mitochondrial precursors as well as decreased protein import. Increased ATAD1 expression contributes to improved fitness of cells with inefficient mitochondrial protein import. Overall, we demonstrate the importance of the ATAD1 quality control pathway in surveilling protein import and its contribution to cellular health.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39024216

RESUMEN

Cytomegalic neurons, characterized by increased size and a hyperactive mechanistic target of rapamycin complex 1 (mTORC1), are pathognomonic for tuberous sclerosis complex (TSC). To model these neurons, we recently generated a murine Tsc1 conditional knockout model in which Tsc1 deletion in late embryonic radial glia results in neuronal hypertrophy of a subset of isocortical pyramidal neurons. In the current study, we compared the cellular pathology of these cytomegalic neurons to those of the enlarged neurons in human cortical tubers. Neurons from the mice showed unique features, such as cytoplasmic vacuoles associated with Golgi complexes and the ectopic formation of perineuronal nets (PNNs), a feature of inhibitory neurons, rarely present in excitatory cortical neurons. The membranes of these vacuoles were enriched for the plasma membrane proteins CD44, KCC2, and Na+/K+ ATPase, suggesting deficits in Golgi membrane trafficking. These aberrant features in the mouse appeared only after the onset of seizures, probably due to the prolonged seizure activity in the context of constitutive mTORC1 activation. Similar PNNs and cytoplasmic vacuoles were present in the cytomegalic neurons of human cortical tubers. Our findings reveal novel pathological features of Golgi complexes and PNNs in the cytomegalic neurons in TSC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...